4,856 research outputs found
A method for the thermal analysis of spacecraft, including all multiple reflections and shading among diffuse, gray surfaces
Computer program for thermal analysis of spacecraft surface
Knowledge Rich Natural Language Queries over Structured Biological Databases
Increasingly, keyword, natural language and NoSQL queries are being used for
information retrieval from traditional as well as non-traditional databases
such as web, document, image, GIS, legal, and health databases. While their
popularity are undeniable for obvious reasons, their engineering is far from
simple. In most part, semantics and intent preserving mapping of a well
understood natural language query expressed over a structured database schema
to a structured query language is still a difficult task, and research to tame
the complexity is intense. In this paper, we propose a multi-level
knowledge-based middleware to facilitate such mappings that separate the
conceptual level from the physical level. We augment these multi-level
abstractions with a concept reasoner and a query strategy engine to dynamically
link arbitrary natural language querying to well defined structured queries. We
demonstrate the feasibility of our approach by presenting a Datalog based
prototype system, called BioSmart, that can compute responses to arbitrary
natural language queries over arbitrary databases once a syntactic
classification of the natural language query is made
Uneconomical Diagnosis of Cladograms: Comments on Wheeler and Nixon's Method for Sankoff Optimization
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74972/1/j.1096-0031.1997.tb00249.x.pd
Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally
Rickettsia are endosymbionts of arthropods, some of which are vectored to vertebrates where they cause disease. Recently, it has been found that some Rickettsia strains harbour conjugative plasmids and others encode some conjugative machinery within the bacterial genome. We investigated the distribution of these conjugation genes in a phylogenetically diverse collection of Rickettsia isolated from arthropods. We found that these genes are common throughout the genus and, in stark contrast to other genes in the genome, conjugation genes are frequently horizontally transmitted between strains. There is no evidence to suggest that these genes are preferentially transferred between phylogenetically related strains, which is surprising given that closely related strains infect similar host species. In addition to detecting patterns of horizontal transmission between diverse Rickettsia species, these findings have implications for the evolution of pathogenicity, the evolution of Rickettsia genomes and the genetic manipulation of intracellular bacteria
Generalized Buneman pruning for inferring the most parsimonious multi-state phylogeny
Accurate reconstruction of phylogenies remains a key challenge in
evolutionary biology. Most biologically plausible formulations of the problem
are formally NP-hard, with no known efficient solution. The standard in
practice are fast heuristic methods that are empirically known to work very
well in general, but can yield results arbitrarily far from optimal. Practical
exact methods, which yield exponential worst-case running times but generally
much better times in practice, provide an important alternative. We report
progress in this direction by introducing a provably optimal method for the
weighted multi-state maximum parsimony phylogeny problem. The method is based
on generalizing the notion of the Buneman graph, a construction key to
efficient exact methods for binary sequences, so as to apply to sequences with
arbitrary finite numbers of states with arbitrary state transition weights. We
implement an integer linear programming (ILP) method for the multi-state
problem using this generalized Buneman graph and demonstrate that the resulting
method is able to solve data sets that are intractable by prior exact methods
in run times comparable with popular heuristics. Our work provides the first
method for provably optimal maximum parsimony phylogeny inference that is
practical for multi-state data sets of more than a few characters.Comment: 15 page
Loss of genetic integrity and biological invasions result from stocking and introductions of Barbus barbus: Insights from rivers in England
Anthropogenic activities, including the intentional releases of fish for enhancing populations (stocking), are recognized as adversely impacting the adaptive potential of wild populations. Here, the genetic characteristics of European barbel Barbus barbus were investigated using 18 populations in England, where it is indigenous to eastern-flowing rivers and where stocking has been used to enhance these populations. Invasive populations are also present in western-flowing rivers following introductions of translocated fish. Two genetic clusters were evident in the indigenous range, centered on catchments in northeast and southeast England. However, stocking activities, including the release of hatchery-reared fish, have significantly reduced the genetic differentiation across the majority of this range. In addition, in smaller indigenous rivers, populations appeared to mainly comprise fish of hatchery origin. In the nonindigenous range, genetic data largely aligned to historical stocking records, corroborating information that one particular river (Kennet) in southeast England was the original source of most invasive B. barbus in England. It is recommended that these genetic outputs inform management measures to either restore or maintain the original genetic diversity of the indigenous rivers, as this should help ensure populations can maintain their ability to adapt to changing environmental conditions. Where stocking is considered necessary, it is recommended that only broodstock from within the catchment is used
Peramorphosis, an evolutionary developmental mechanism in neotropical bat skull diversity
Background
The neotropical leaf‐nosed bats (Chiroptera, Phyllostomidae) are an ecologically diverse group of mammals with distinctive morphological adaptations associated with specialized modes of feeding. The dramatic skull shape changes between related species result from changes in the craniofacial development process, which brings into focus the nature of the underlying evolutionary developmental processes.
Results
In this study, we use three‐dimensional geometric morphometrics to describe, quantify, and compare morphological modifications unfolding during evolution and development of phyllostomid bats. We examine how changes in development of the cranium may contribute to the evolution of the bat craniofacial skeleton. Comparisons of ontogenetic trajectories to evolutionary trajectories reveal two separate evolutionary developmental growth processes contributing to modifications in skull morphogenesis: acceleration and hypermorphosis.
Conclusion
These findings are consistent with a role for peramorphosis, a form of heterochrony, in the evolution of bat dietary specialists
The radiation of cynodonts and the ground plan of mammalian morphological diversity
Cynodont therapsids diversified extensively after the Permo-Triassic mass extinction event, and gave rise to mammals in the Jurassic. We use an enlarged and revised dataset of discrete skeletal characters to build a new phylogeny for all main cynodont clades from the Late Permian to the Early Jurassic, and we analyse models of morphological diversification in the group. Basal taxa and epicynodonts are paraphyletic relative to eucynodonts, and the latter are divided into cynognathians and probainognathians, with tritylodonts and mammals forming sister groups. Disparity analyses reveal a heterogeneous distribution of cynodonts in a morphospace derived from cladistic characters. Pairwise morphological distances are weakly correlated with phylogenetic distances. Comparisons of disparity by groups and through time are non-significant, especially after the data are rarefied. A disparity peak occurs in the Early/Middle Triassic, after which period the mean disparity fluctuates little. Cynognathians were characterized by high evolutionary rates and high diversity early in their history, whereas probainognathian rates were low. Community structure may have been instrumental in imposing different rates on the two clades
A revised generic classification of the tribe Sileneae (Caryophyllaceae)
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73198/1/j.1756-1051.2000.tb00760.x.pd
- …