

A METHOD FOR THE THERMAL ANALYSIS
 OF SPACECRAFT, INCLUDING ALL MULTIPLE REFLECTIONS AND SHADING AMONG DIFFUSE, GRAY SURFACES

by Doyle P. Swofford

Langley Research Center
Hampton, Va. 23365

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JULY 1970
4. Title and Subtitle

A METHOD FOR THE THERMAL ANALYSIS OF SPACECRAFT,
INCLUDING ALL MULTIPLE REFLECTIONS AND SHADING AMONG DIFFUSE, GRAY SURFACES

ロ!32745
7. Author(s)

Doyle P. Swofford
9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, Va. 23365
2. Government Accession No.
3. Recipierıs
5. Report Date

July 1970
6. Performing Organization Code
8. Performing Organization Report No. L-6063
10. Work Unit No.

124-09-24-03
11. Contract or Grant No.
13. Type of Report and Period Covered

Technical Note
14. Sponsoring Agency Code

National Aeronautics and Space Administration
Washington, D.C. 20546
15. Supplementary Notes
16. Abstract

A new method which uses finite surface elements has been developed and used to calculate temperature histories for spacecraft of arbitrary physical geometry. This method assumes gray surfaces with diffuse reflection and radiation properties and accounts for all multiple reflections. The analysis is performed in terms of the Cartesian coordinates of the four corners of each plane quadrilateral element. Shading, or optical blocking, is accounted for in the radiant heat exchange between each pair of surfaces and in the thermal fluxes from external sources which are incident on each surface. This method has been programed for a digital computer and the program can be used as is for the thermal analysis of any spacecraft whose surfaces may be approximated by planar quadrilateral elements which obey Lambert's cosine law. A listing of the program and its auxiliary programs is included in the report. An example problem of a complex, multiwinged earth-orbiting satellite is also presented.
17. Key Words (Suggested by Author(s)) Spacecraft thermal analysis Multiple diffuse reflections Digital computer programs
19. Security Classif. (of this report) Unclassified
18. Distribution Statement

Unclassified - Unlimited

A METHOD FOR THE THERMAL ANALYSIS OF

SPACECRAFT, INCLUDING ALL MULTIPLE RE FLECTIONS AND SHADING AMONG DIFFUSE, GRAY SURFACES

By Doyle P. Swofford
Langley Research Center

SUMMARY

A new method which uses finite surface elements has been developed and used to calculate temperature histories for spacecraft of arbitrary physical geometry. This method assumes gray surfaces with diffuse reflection and radiation properties and accounts for all multiple reflections. The analysis is performed in terms of the Cartesian coordinates of the four corners of each plane quadrilateral element. Shading, or optical blocking, is accounted for in the radiant heat exchange between each pair of surfaces and in the thermal fluxes from external sources which are incident on each surface.

This method has been programed for a digital computer and the program can be used as is for the thermal analysis of any spacecraft whose surfaces may be approximated by planar quadrilateral elements which obey Lambert's cosine law. A listing of the program and its auxiliary programs is included in the report.

An example problem of a complex, multiwinged earth-orbiting satellite is also presented.

INTRODUCTION

For a spacecraft which has extended members with large surface areas or has large enclosed spaces containing personnel or sensitive electronic equipment, shading and multiple reflections among its surfaces can be critical to its thermal design.

The projected areas of the external surfaces of the spacecraft and the shape factors between all surfaces show the effect of shading of spacecraft surfaces by one another. The usual method of obtaining projected areas is by photographs of a model of the spacecraft. Shape factors may also be obtained by a photographic method (ref. 1, pp. 399-402).

For complex spacecraft in which temperatures are required at literally hundreds of nodal points, computer calculation methods are the only practical approach because of the large number of shape factors and projected areas that must be obtained.

When the computer program in this report was written, other programs were already available which calculate projected areas and shape factors for configurations with shading and which account for multiple diffuse reflections of thermal radiation as well. (See ref. 2.) However, since these programs require much time to prepare and run, a more simple, yet flexible program, such as the one in the present investigation, was desired for development use in a wide variety of spacecraft. The thermal design may be fairly well fixed by use of the simpler program and then confirmed by use of a more sophisticated program.

The treatment of the multiple reflections is made tractable by the usual approximation that all the surfaces reflect and emit radiation diffusely (i.e., according to Lambert's cosine law). Once the shape factors and projected areas are calculated, the quadrature solution to this diffuse problem (developed by Gebhart, ref. 3) can be used. The basis of the approach used here is to divide the irregular quadrilateral surfaces of the spacecraft into grids by the use of two-dimensional coordinate systems embedded in each separate surface. The division allows the required integrations to be carried out in two-dimensional spaces. A shading test for each grid element is made by determining whether a line from the source point to the grid point is intercepted by any other surface belonging to the spacecraft.

Calculated temperatures resulting from the shape factors and projected areas can be steady state or time dependent. If radiant heat transfer is predominant over conductive heat transfer, equilibrium temperatures may be found by solving simultaneous equations for the fourth power of the temperature of each surface. The nonequilibrium case (varying external and internal heat loads) is solved by integrating the time derivatives of the temperatures. In this case heat conduction is included in the calculation.

SYMBOLS

A area

[A] diagonal matrix of the areas of a group of surfaces

Aproj projected area of a surface
[a] diagonal matrix of surface absorptivities

B thermal flux incident on one surface from others
\{B\} one-dimensional array of thermal flux incident on each surface from the other surfaces

C
$\mathrm{D}_{\mathrm{ij}} \quad$ radiation coefficient between two identically shaped, closely spaced parallel plates, $\frac{\sigma}{\frac{1}{\mathrm{e}_{\mathrm{i}}}+\frac{1}{\mathrm{e}_{\mathrm{j}}}-1}$
[D] matrix of the radiation coefficients $D_{i j}$
e hemispherical emissivity of a surface
[e] diagonal matrix of the emissivities of a group of surfaces
[G] square matrix which yields $\{B\}$ when it operates upon $\{\epsilon\}$ (see eq. (6))

H sum of the thermal flux emitted by a surface and the flux reflected by it $\{\mathrm{H}\} \quad$ one-dimensional array of total thermal flux moving away from each surface $h_{i j} \quad$ conduction coefficient between nodes i and j identity matrix shading indicator $\left(I_{s h}=0\right.$: shaded by an intervening member; $I_{S h}=1:$ not shaded)
sunlight indicator ($K=1$: sunlit; $K=0$: shaded by planet)
mass

$\overline{\mathrm{n}}$	unit normal vector of a surface
q	net heat flow rate to a node
$\mathrm{q}_{\text {cond }}$	net rate of heat flow to a node by conduction
$\mathrm{q}_{\text {int }}$	rate of internal heat generation in a node
$\mathrm{q}_{\text {rad }}$	net rate of heat flow between close parallel nodes by radiation
$\overline{\mathbf{r}}$	position vector of a point
$\overline{\mathbf{r}}_{\mathrm{ij}}$	position vector of point j relative to point $i, \bar{r}_{j}-\bar{r}_{\mathbf{i}}$
S	solar flux at position of planet or spacecraft
T	absolute temperature, ${ }^{\circ} \mathrm{K}$
T_{p}	equivalent blackbody temperature of a planet, ${ }^{\circ} \mathrm{K}$
t	time
$\overline{\mathrm{V}}_{\mathrm{c}}$	position vector of the centroid of an elemental area
$\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}}$	position vector of the lower left corner of the jkth grid element of a plane quadrilateral
$\overline{\mathrm{V}}_{\mathrm{p}}$	unit vector directed toward the center of a planet from an orbiting spacecraft
[W]	diagonal matrix with diagonal $W_{i}=\sum_{j} D_{i j}$
z_{i}	coefficient for heat conduction away from a node, $z_{i}=\sum_{j} h_{i j}$
[z]	diagonal matrix of coefficients for heat conduction away from each node
α, β, γ	parameters which each give the ratio of the lengths of two colinear vectors having a common origin

$\alpha^{\prime}, \beta^{\prime} \quad$ abscissa and ordinate of a point in a normalized skewed coordinate system
ϵ
$\rho \quad$ reflectivity of a surface
[$\rho]$ diagonal matrix of reflectivities of surfaces
$\sigma \quad$ Stefan-Boltzmann constant sources external to the spacecraft angle formed by vectors $\overline{\mathrm{n}}_{\mathrm{i}}$ and $\overline{\mathrm{r}}_{\mathrm{ij}}$
angle formed by vectors $\overline{\mathrm{n}}_{\mathrm{j}}$ and $\overline{\mathrm{r}}_{\mathrm{ij}}$ spacecraft of two given vectors in the plane
one-dimensional array of unit projected areas
reflectivity, or albedo, of a planet surface for solar radiation surface i
planet solar albedo flux incident upon a surface of a spacecraft
planet thermal emission incident on a spacecraft surface
sum of the thermal emission flux from a spacecraft surface and the reflected portion of incident thermal flux arriving at the surface directly from
one-dimensional array of the fluxes ϵ of the surfaces of a spacecraft
angle formed at the center of a planet by lines to the sun and to an orbiting
parameters giving any vector lying in a given plane as a linear combination
ratio of the projected area of a surface to its total area (unit projected area)
total radiative heat flow from surface j which is incident directly upon
heat flux incident upon elemental area $d A_{i}$ which is received from $d A_{j}$
net thermal radiation flux received by a plate i from identical plates j parallel to and near it, $\mathrm{D}_{\mathrm{ji}}\left(\mathrm{T}_{\mathrm{j}}^{4}-\mathrm{T}_{\mathrm{i}}^{4}\right)$
$\phi_{S} \quad$ solar radiation flux incident upon a spacecraft surface

$$
\psi_{\mathrm{ji}} \quad \text { function which is integrated to yield } \quad \mathrm{F}_{\mathrm{ji}},-\frac{\left(\overline{\mathrm{n}}_{\mathrm{i}} \cdot \overline{\mathrm{r}}_{\mathrm{ij}}\right)\left(\overline{\mathrm{n}}_{\mathrm{j}} \cdot \overline{\mathrm{r}}_{\mathrm{ij}}\right)}{\pi\left(\overline{\mathrm{r}}_{\mathrm{ij}} \cdot \overline{\mathrm{r}}_{\mathrm{ij}}\right)^{2}}
$$

half the angle subtended by a planet from the position of an orbiting spacecraft

Subscripts:
a
albedo
p planetary
s solar
t
thermal radiation emitted by spacecraft surfaces or planet surface

When an expression with an asterisk affixed as a superscript has a negative value, it is set equal to zero; positive values are unchanged.

A bar over a symbol indicates a vector quantity.

ANALYSIS

Radiative Heat Balance

The analysis of the heat transfer by diffuse emission and reflection of thermal radiation between one surface and the remainder of a group of surfaces is introduced by first considering just two surfaces i and j exchanging thermal radiation. The two surfaces are assumed to be isothermal.

The heat flux incident upon the elemental area dA_{i} of surface i which is received from $d A_{j}$ of surface j is given by

$$
\mathrm{d} \phi_{\mathrm{ji}}=\frac{\mathrm{H}_{\mathrm{j}}}{\pi} \frac{\mathrm{dA}_{\mathrm{j}}}{r_{\mathrm{i} \mathrm{j}}^{2}} \cos \theta_{\mathrm{i}} \cos \theta_{\mathrm{j}}
$$

where H_{j} is the heat flux leaving $d A_{j}, r_{i j}$ is the distance between $d A_{i}$ and $d A_{j}$, and θ_{i} and θ_{j} are the angles made with the normals to dA_{i} and $\mathrm{d} A_{j}$, respectively, by the line $\overline{\mathbf{r}}_{\mathrm{ij}}$ between them as shown in sketch A :

Sketch A
If \bar{r}_{i} is the position vector of dA_{i}, and \bar{r}_{j} that of $d A_{j}$, then

$$
\cos \theta_{i}=\bar{n}_{i} \cdot \frac{\bar{r}_{j}-\bar{r}_{i}}{\left|\bar{r}_{j}-\bar{r}_{i}\right|}=\frac{\bar{n}_{i} \cdot \bar{r}_{i j}}{\left|\bar{r}_{i j}\right|}
$$

and

$$
\cos \theta_{j}=n_{j} \cdot \frac{\bar{r}_{i}-\bar{r}_{j}}{\left|\bar{r}_{i}-\bar{r}_{j}\right|}=\bar{n}_{j} \cdot \frac{-\left(\bar{r}_{j}-\bar{r}_{i}\right)}{\left|\bar{r}_{i j}\right|}=-\frac{\bar{n}_{j} \cdot \bar{r}_{i j}}{\left|\bar{r}_{i j}\right|}
$$

where \bar{n}_{i} and \bar{n}_{j} are unit normal vectors to $d A_{i}$ and $d A_{j}$. Thus,

$$
\mathrm{d} \phi_{\mathrm{ji}}=-\frac{\mathrm{H}_{\mathrm{j}}}{\pi} \frac{\left(\overline{\mathrm{n}}_{\mathrm{i}} \cdot \overline{\mathrm{r}}_{\mathrm{ij}}\right)\left(\overline{\mathrm{n}}_{\mathrm{j}} \cdot \overline{\mathrm{r}}_{\mathrm{ij}}\right)}{\mathrm{r}_{\mathrm{ij}}^{4}} \mathrm{dA}_{\mathrm{j}}
$$

Now, let

$$
-\frac{\left(\bar{n}_{i} \cdot \bar{r}_{i j}\right)\left(\bar{n}_{j} \cdot \bar{r}_{i j}\right)}{\pi r_{i j}^{4}}=\psi_{j i}=\psi_{i j}
$$

so that

$$
\mathrm{d} \phi_{\mathrm{ji}}=\mathrm{H}_{\mathrm{j}} \psi_{\mathrm{ij}} \mathrm{dA}_{\mathrm{j}}
$$

If Φ_{ji} is the total heat flow incident upon surface i from surface j , then

$$
d^{2} \Phi_{j i}=d \phi_{j i} d A_{i}=H_{j} \psi_{i j} d A_{i} d A_{j}
$$

and

$$
\Phi_{j i}=\int_{A_{j}} H_{j} \int_{A_{i}} \psi_{i j} d A_{i} d A_{j}
$$

Assuming H_{j} constant over surface j gives

$$
\Phi_{j i}=H_{j} \int_{A_{j}} \int_{A_{i}} \psi_{i j} d A_{i} d A_{j}=H_{j} F_{i j} A_{i} A_{j}
$$

where the shape factor $F_{i j}$ is the average value of $\psi_{i j}$ over the two surfaces. Unlike the conventional shape factor, $F_{i j}$ is not nondimensional and must be multiplied by A_{j} to yield the conventional quantity $f_{i j}$. Also, $F_{j i}=F_{i j}$. The average flux incident on surface i from surface j is defined as

$$
B_{i}=\frac{\Phi_{\mathbf{j}}}{A_{i}}=F_{i j} A_{j} H_{j}
$$

This is the flux incident on surface i from a single surface j. For more than one surface j, the total flux incident on i is given by the sum over j of the individual contributions:

$$
\begin{equation*}
B_{i}=\sum_{j} F_{i j} A_{j} H_{j} \tag{1}
\end{equation*}
$$

If surface \mathbf{i} is concave, B_{i} includes a contribution from surface i to itself. When B_{i} and H_{i} are treated as the ith components of linear arrays $\{B\}$ and $\{H\}$, it follows directly from equation (1) that

$$
\begin{equation*}
\{B\}=[F][A]\{H\} \tag{2}
\end{equation*}
$$

where $[F]$ is a square matrix with elements $F_{i j}$, and $[A]$ is a diagonal matrix whose diagonal A_{i} is the area of surface i.

The flux H_{j} leaving surface j is made up of ϵ_{j} (the emitted flux and the reflected portion of flux incident from sources external to the spacecraft) and the reflected part $\rho_{\mathrm{j}} \mathrm{B}_{\mathrm{j}}$ of the incident flux from other surfaces, where ρ_{j} is the reflectivity of surface j . Thus,

$$
\begin{equation*}
H_{j}=\epsilon_{j}+\rho_{j} B_{j} \tag{3}
\end{equation*}
$$

and ϵ_{j} includes the reflected part of any external radiation directly incident on j, such as sunlight. In the array form,

$$
\begin{equation*}
\{H\}=\{\epsilon\}+[\rho]\{B\} \tag{4}
\end{equation*}
$$

where $[\rho]$ is a diagonal matrix of the reflectivities of the surfaces.
Equations (2) and (4) are two matrix equations in the two arrays $\{B\}$ and $\{H\}$; therefore, unique solutions may be obtained for them. Substituting equation (4) into equation (2) gives

$$
\begin{equation*}
\{\mathrm{B}\}=[\mathrm{F}][\mathrm{A}]\{\epsilon\}+[\mathrm{F}][\mathrm{A}][\rho]\{\mathrm{B}\} \tag{5}
\end{equation*}
$$

and, on solving for $\{B\}$,

$$
\begin{equation*}
\{\mathrm{B}\}=[\mathrm{I}-\mathrm{FA} \rho]^{-1}[\mathrm{FA}]\{\epsilon\}=[\mathrm{G}]\{\epsilon\} \tag{6}
\end{equation*}
$$

where [I] is an identity matrix. Since [G] is a function only of the surface properties and geometry, it need only be evaluated once for each configuration.

The net heat fluxes are given by the difference $\{B\}-\{H\}$ between the incident flux and the flux leaving the surfaces. From equation (4),

$$
\{B\}-\{H\}=[\mathrm{I}-\rho]\{\mathrm{B}\}-\{\epsilon\}
$$

or

$$
\begin{equation*}
\{B-H\}=[a]\{B\}-\{\epsilon\} \tag{7}
\end{equation*}
$$

When equation (7) is substituted into equation (6), the following equation is obtained:

$$
\begin{equation*}
\{\mathrm{B}-\mathrm{H}\}=[\mathrm{aG}-\mathrm{I}]\{\epsilon\} \tag{8}
\end{equation*}
$$

where [a] is a diagonal matrix of the absorptivities of the surfaces and the matrix [G] is given in equation (6).

Equation (8) gives the net flux on each surface due to all emissions and reflections of thermal radiation from all the surfaces. Now, only the fluxes from external radiation sources which are directly incident on the surfaces remain to be accounted for.

In the specific case of a spacecraft immersed in a real environment, there will be two regimes of thermal radiation flux - the principally short-wavelength solar flux and the principally long-wavelength emission from the spacecraft surfaces and from the planet surface. The external thermal radiation sources are direct and planet-reflected (albedo) solar flux and emission from the surface of a planet due to its temperature. Heat conduction as well as radiation will be accounted for. A diagram of the heat transfer for a single node is shown in sketch B:

Sketch B
If q_{i} is the net rate of heat input to member i, then the heat balance is given by

$$
\begin{align*}
\frac{q_{i}}{A_{i}}= & \frac{m_{i} c_{i}}{A_{i}} \frac{d T_{i}}{d t}=\left(B_{S}-H_{S}\right)_{i}+\left(B_{t}-H_{t}\right)_{i}+\left(\phi_{s}+\phi_{p}\right)_{i} \\
& +\frac{\left(q_{i n t}\right)_{i}+\left(q_{c o n d}\right)_{i}}{A_{i}}+\left(\phi_{\mathrm{rad}}\right)_{i} \tag{9}
\end{align*}
$$

where
$m_{i} \quad$ mass of i
$c_{i} \quad$ specific heat of i
$\mathrm{T}_{\mathrm{i}} \quad$ absolute temperature of i
$\phi_{\mathbf{S}, \mathbf{i}} \quad$ solar flux directly incident on \mathbf{i}, both planet reflected and direct from the sun
$\phi_{\mathrm{p}, \mathrm{i}} \quad$ flux emitted from the planet surface and directly incident on i
$\left(\phi_{\mathrm{rad}}\right)_{\mathbf{i}}$ net radiation flux to \mathbf{i} from \mathbf{j}, which is parallel to and near \mathbf{i}
$\left(q_{i n t}\right)_{i} \quad$ rate of internal heat generation
$\left(q_{\text {cond }}\right)_{i}$ net rate of conduction to i from other members
Equation (8) gives for the solar spectrum

$$
\begin{equation*}
\left\{\mathrm{B}_{\mathrm{s}}-\mathrm{H}_{\mathrm{s}}\right\}=\left[\mathrm{a}_{\mathrm{s}} \mathrm{G}_{\mathrm{s}}-\mathrm{I}\right]\left\{\epsilon_{\mathrm{s}}\right\} \tag{10}
\end{equation*}
$$

where $\epsilon_{\mathrm{S}, \mathrm{i}}$ is the reflected part of the incident solar and albedo flux on i, that is, $\left(\rho_{\mathrm{S}} \phi_{\mathrm{S}}\right)_{\mathrm{i}}$. For long-wavelength flux

$$
\begin{equation*}
\left\{\mathrm{B}_{\mathrm{t}}-\mathrm{H}_{\mathrm{t}}\right\}=\left[\mathrm{eG}_{\mathrm{t}}-\mathrm{I}\right]\left\{\epsilon_{\mathrm{t}}\right\} \tag{11}
\end{equation*}
$$

where $\epsilon_{t, i}$ is made up of reflected planet-emitted flux and the thermal emission of i. Thus

$$
\epsilon_{\mathrm{t}, \mathrm{i}}=\sigma \mathrm{e}_{\mathrm{i}} \mathrm{~T}_{\mathrm{i}}^{4}+\rho_{\mathrm{t}, \mathrm{i}} \phi_{\mathrm{p}, \mathrm{i}}
$$

or in array form,

$$
\begin{equation*}
\left\{\epsilon_{\mathrm{t}}\right\}=\sigma[\mathrm{e}]\left\{\mathrm{T}^{4}\right\}+[\mathrm{I}-\mathrm{e}]\left\{\phi_{\mathrm{p}}\right\} \tag{12}
\end{equation*}
$$

where σ is the Stefan-Boltzmann constant, [e] is a diagonal matrix of the emissivities of the surfaces, and $\left\{\mathrm{T}^{4}\right\}$ is an array of the fourth powers of the temperatures.

Equation (9) becomes, in the array form,

$$
\begin{equation*}
\left\{\frac{q}{A}\right\}=\left\{B_{s}-H_{s}\right\}+\left\{B_{t}-H_{t}\right\}+\left\{\phi_{\mathrm{s}}+\phi_{\mathrm{p}}\right\}+\left\{\frac{q_{\mathrm{int}}}{A}\right\}+\left\{\frac{q_{\mathrm{cond}}}{\mathrm{~A}}\right\}+\left\{\phi_{\mathrm{rad}}\right\} \tag{13}
\end{equation*}
$$

Substituting equations (10), (11), and (12) into equation (13) gives

$$
\begin{align*}
\left\{\frac{q}{A}\right\}= & {\left[a_{s} G_{s}-I\right]\left[\rho_{s}\right]\left\{\phi_{s}\right\}+\sigma\left[\mathrm{eG}_{t}-I\right][\mathrm{e}]\left\{\mathrm{T}^{4}\right\}+\left[\mathrm{eG}_{\mathrm{t}}-\mathrm{I}\right][\mathrm{I}-\mathrm{e}]\left\{\phi_{\mathrm{p}}\right\}+\left\{\phi_{\mathrm{S}}+\phi_{\mathrm{p}}\right\} } \\
& +\left\{\frac{q_{\text {int }}}{\mathrm{A}}\right\}+\left\{\frac{q_{\text {cond }}}{\mathrm{A}}\right\}+\left\{\phi_{\mathrm{rad}}\right\} \tag{14}
\end{align*}
$$

and after simplification,

$$
\begin{align*}
\left\{\frac{q}{A}\right\}= & {\left[a_{s}\right]\left[I+G_{s} \rho_{s}\right]\left\{\phi_{s}\right\}+[\mathrm{e}]\left[\mathrm{I}+\mathrm{G}_{\mathrm{t}}(\mathrm{I}-\mathrm{e})\right]\left\{\phi_{\mathrm{p}}\right\}-\sigma[\mathrm{e}]\left[\mathrm{I}-\mathrm{G}_{\mathrm{t}} \mathrm{e}\right]\left\{\mathrm{T}^{4}\right\} } \\
& +\left\{\frac{\mathrm{q}_{\text {int }}+q_{\text {cond }}}{\mathrm{A}}\right\}+\left\{\phi_{\mathrm{rad}}\right\} \tag{15}
\end{align*}
$$

The net rate of heat conduction to member i is given by

$$
\left(q_{\text {cond }}\right)_{i}=\sum_{j} h_{i j}\left(T_{j}-T_{i}\right)=\sum_{j}\left(h_{i j} T_{j}\right)-\left(\sum_{j} h_{i j}\right) T_{i}
$$

where $h_{i j}$ is the conduction coefficient between nodes i and j. In array form,

$$
\begin{equation*}
\left\{q_{\text {cond }}\right\}=[\mathrm{h}]\{\mathrm{T}\}-[\mathrm{z}]\{\mathrm{T}\}=[\mathrm{h}-\mathrm{z}]\{\mathrm{T}\} \tag{16}
\end{equation*}
$$

where z is a diagonal matrix with $z_{i}=\sum_{j} h_{i j}$.
The net radiant heat to i from the identical panel j with which it forms an isolated enclosure is given by

$$
\left(\phi_{\mathrm{rad}}\right)_{\mathrm{i}}=\sum_{\mathrm{j}} \mathrm{D}_{\mathrm{ji}}\left(\mathrm{~T}_{\mathrm{j}}^{4}-\mathrm{T}_{\mathrm{i}}^{4}\right)
$$

where $D_{j i}$ is the radiation coefficient between j and i, given by

$$
\mathrm{D}_{\mathrm{ji}}=\frac{\sigma}{\frac{1}{\mathrm{e}_{\mathrm{i}}}+\frac{1}{\mathrm{e}_{\mathrm{j}}}-1}=\mathrm{D}_{\mathrm{ij}}
$$

Thus,

$$
\begin{equation*}
\left\{\phi_{\mathrm{rad}}\right\}=[\mathrm{D}-\mathrm{W}]\left\{\mathrm{T}^{4}\right\} \tag{17}
\end{equation*}
$$

where W is a diagonal matrix with $W_{i}=\sum_{j} D_{i j}$.
Substituting equations (16) and (17) into equation (15) gives the heat balance as

$$
\begin{align*}
\left\{\frac{q}{\mathrm{~A}}\right\}= & {\left[\mathrm{a}_{\mathrm{s}}\right]\left[\mathrm{I}+\mathrm{G}_{\mathrm{S}} \rho_{\mathrm{S}}\right]\left\{\phi_{\mathrm{S}}+\phi_{\mathrm{a}}\right\}+[\mathrm{e}]\left[\mathrm{I}+\mathrm{G}_{\mathrm{t}}(\mathrm{I}-\mathrm{e})\right]\left\{\phi_{\mathrm{p}}\right\} } \\
& -\sigma[\mathrm{e}]\left[\mathrm{I}-\mathrm{G}_{\mathrm{t}} \mathrm{e}\right]\left\{\mathrm{T}^{4}\right\}+[\mathrm{D}-\mathrm{W}]\left\{\mathrm{T}^{4}\right\} \\
& +\left[\frac{1}{\mathrm{~A}}\right][\mathrm{h}-\mathrm{z}]\{\mathrm{T}\}+\left\{\frac{\mathrm{q}_{\text {int }}}{\mathrm{A}}\right\} \tag{18}
\end{align*}
$$

Only the external sources $\phi_{S, i}, \quad \phi_{a, i}$, and $\phi_{p, i}$ remain to be evaluated. The solar flux $\phi_{S, i}$ incident on i is the simplest, being proportional to the projection of the sunlit area of surface i upon a plane perpendicular to a line to the sun $\left(A_{\mathrm{proj}}\right)_{i}$:

$$
\begin{gathered}
A_{i} \phi_{S, i}=\left(A_{p r o j}\right)_{i} \mathrm{KS} \\
\phi_{S i}=\left(\frac{A_{\mathrm{proj}}}{A}\right)_{\mathbf{i}} \mathrm{KS}=\mu_{\mathrm{S}, \mathrm{i}} \mathrm{KS}
\end{gathered}
$$

Or, in array form,

$$
\begin{equation*}
\left\{\phi_{\mathbf{s}}\right\}=\operatorname{KS}\left\{\mu_{\mathbf{s}}\right\} \tag{19}
\end{equation*}
$$

where K has the value 0 if the spacecraft is in the shadow of the planet and the value 1 if not; and S is the local solar flux.

The planet-emitted flux is given by

$$
\phi_{\mathrm{p}, \mathrm{i}} \approx \mathrm{f}_{\mathrm{p}, \mathrm{i}} \sigma \mathrm{~T}_{\mathrm{p}}^{4}
$$

and, in array form,

$$
\begin{equation*}
\left\{\phi_{\mathrm{p}}\right\}=\sigma \mathrm{T}_{\mathrm{p}}^{4}\left\{\mathrm{f}_{\mathrm{p}}\right\} \tag{20}
\end{equation*}
$$

where $f_{p, i}$ is the shape factor of surface i for the planet-emitted radiation, and T_{p} is the equivalent blackbody temperature of the planet ($\sigma \mathrm{T}_{\mathrm{p}}^{4}$ is equal to the average value over the planet of the emitted thermal radiation flux).

The planet solar albedo flux on surface i is given by

$$
\phi_{\mathrm{a}, \mathrm{i}} \approx \rho_{\mathrm{p}} \mathrm{sf}_{\mathrm{a}, \mathrm{i}} \cos ^{*} \theta_{\mathrm{s}}
$$

or, in array form,

$$
\begin{equation*}
\left\{\phi_{\mathrm{a}}\right\}=\rho_{\mathrm{p}} \mathrm{~S} \cos ^{*} \theta_{\mathrm{s}}\{\mathrm{f} \mathbf{a}\} \tag{21}
\end{equation*}
$$

where ρ_{p} is the mean reflectivity of the planet for sunlight, $f_{a, i}$ is the shape factor of surface i for the planet albedo flux, θ_{S} is the angle formed at the center of the planet by the lines to the spacecraft and the sun, and $\cos ^{*} \theta_{\mathbf{S}}=\cos \theta_{\mathbf{S}}$ if $\cos \theta_{\mathrm{S}}$ is positive and equal to 0 if $\cos \theta_{\mathrm{S}}$ is negative.

The factors f_{p} and f_{a} are difficult to calculate, even without the added complication of partial shading of a surface. An approximation for them - exact when the panel is exposed to the entire portion of the planet surface which is visible from the position of the spacecraft - is

$$
\mathrm{f}_{\mathrm{a}, \mathrm{i}} \approx \mathrm{f}_{\mathrm{p}, \mathrm{i}} \approx\left(\overline{\mathrm{n}}_{\mathrm{i}} \cdot \overline{\mathrm{~V}}_{\mathrm{p}}\right)^{*} \sin ^{2} \omega \approx \mu_{\mathrm{p}, \mathrm{i}} \sin ^{2} \omega
$$

Here $\overline{\mathrm{V}}_{\mathrm{p}}$ is a unit vector pointing from the spacecraft toward the center of the planet, and ω is the angle included by $\overline{\mathrm{V}}_{\mathrm{p}}$ and a tangent from the spacecraft to the planet surface. The factor $\mu_{p, i}$ approximates the effect of shading on $f_{p, i}$ and $f_{a, i}$.

When the relations for the external fluxes (eqs. (19) to (21)) are substituted into equation (18), the heat balance becomes

$$
\begin{align*}
\left\{\frac{\mathrm{q}}{\mathrm{~A}}\right\}= & \mathrm{KS}\left[\mathrm{a}_{\mathrm{S}}\right]\left[\mathrm{I}+\mathrm{G}_{\mathrm{S}} \rho_{\mathrm{S}}\right]\left\{\mu_{\mathrm{S}}\right\}+\rho_{\mathrm{p}} \mathrm{~S} \cos ^{*} \theta_{\mathrm{S}} \sin ^{2} \omega\left[\mathrm{a}_{\mathrm{S}}\right]\left[\mathrm{I}+\mathrm{G}_{\mathrm{S}} \rho_{\mathrm{S}}\right]\left\{\mu_{\mathrm{p}}\right\} \\
& \left.+\sigma \mathrm{T}_{\mathrm{p}}^{4} \sin ^{2} \omega[\mathrm{e}]\left[\mathrm{I}+\mathrm{G}_{\mathrm{t}}(\mathrm{I}-\mathrm{e})\right]\left\{\mu_{\mathrm{p}}\right\}-\sigma[\mathrm{e}]\left[\mathrm{I}-\mathrm{G}_{\mathrm{t}}\right]\right]\left\{\mathrm{T}^{4}\right\} \\
& +[\mathrm{D}-\mathrm{W}]\left\{\mathrm{T}^{4}\right\}+\left[\frac{1}{\mathrm{~A}}\right][\mathrm{h}-\mathrm{z}]\{\mathrm{T}\}+\left\{\frac{\mathrm{q}_{\text {int }}}{\mathrm{A}}\right\} \tag{22}
\end{align*}
$$

For the equilibrium case, the net heat flow to each node is zero, and with negligible conduction, equation (22) can be solved for $\left\{\mathrm{T}^{4}\right\}$:

$$
\begin{align*}
\sigma\left\{\mathrm{T}^{4}\right\}= & {\left[\mathrm{e}\left(\mathrm{I}-\mathrm{G}_{\mathrm{t}} \mathrm{e}\right)+\frac{1}{\sigma}(\mathrm{D}-\mathrm{W})\right]^{-1}\left\{\mathrm{KS}\left[\mathrm{a}_{\mathrm{s}}\right]\left[\mathrm{I}+\mathrm{G}_{\mathrm{S}} \rho_{\mathrm{s}}\right]\left\{\mu_{\mathrm{S}}\right\}+\rho_{\mathrm{p}} \mathrm{~S} \cos ^{*} \theta_{\mathrm{S}} \sin ^{2} \omega\left[\mathrm{a}_{\mathrm{s}}\right]\left[\mathrm{I}+\mathrm{G}_{\mathrm{S}} \rho_{\mathrm{S}}\right]\left\{\mu_{\mathrm{p}}\right\}\right.} \\
& \left.+\sigma \mathrm{T}_{\mathrm{p}}^{4} \sin ^{2} \omega[\mathrm{e}]\left[\mathrm{I}+\mathrm{G}_{\mathrm{t}}(\mathrm{I}-\mathrm{e})\right]\left\{\mu_{\mathrm{p}}\right\}+\left\{\frac{\mathrm{q}_{\mathrm{int}}}{\mathrm{~A}}\right\}\right\} \tag{23}
\end{align*}
$$

For a multifaceted node which is nearly isothermal, although its faces receive different thermal radiation fluxes, the total net heat flow rate is given by

$$
q_{i}=\sum_{j=1}^{n}\left(\frac{q}{A}\right)_{j} A_{j}
$$

where n is the number of faces of node i. For the nonequilibrium case,

$$
\begin{equation*}
\frac{d T_{i}}{d t}=\frac{A_{i}}{m_{i} c_{i}}\left(\frac{q}{A}\right)_{i} \tag{24}
\end{equation*}
$$

Equation (24) may be integrated numerically to yield the temperature history, beginning with given initial temperatures.

Listings of the three computer programs which calculate shape factors, projected areas, and temperatures are shown in appendix A. They are written in the FORTRAN IV language. The shape factors and projected areas are run in separate programs because they need to be calculated only once for each configuration. In the main program, surface properties, materials, heat loads, attitude, and flight trajectory can be varied for a fixed configuration without recalculating the shape factors and projected areas. Punchedcard outputs from the other two programs supply shape factor and projected-area inputs to the main program.

Computation of Geometric Shape Factors and Projected Areas

Routines were written to enable the digital computer to calculate [F] and $\{\mu\}$ using as input the coordinates of the corners of each plane quadrilateral into which the spacecraft has been divided. The factor which makes the calculation of the projected area of a flat plate complex is the shading by intercepting surfaces.

In order to calculate the unshaded projected area of a plane quadrilateral, it is divided into an $n \times n$ grid. Formulas for the coordinates of the grid points and areas
of the grid elements are developed in appendix B. The ratio of the projected area to the total area is given by

$$
\begin{align*}
\mu_{i} & =\frac{1}{A_{i}} \int_{A_{i}}\left(\bar{V}_{\text {source }} \cdot \bar{n}_{i}\right)^{*} I_{\text {sh, }} d A_{i} \\
& \approx \frac{1}{A_{i}}\left(\bar{V}_{\text {source }} \cdot \bar{n}_{i}\right) \sum_{i} I_{\text {sh,i }} \Delta A_{i} \tag{25}
\end{align*}
$$

where $\overline{\mathrm{V}}_{\text {source }}$ is the unit vector in the direction of the source and

$$
I_{S h}= \begin{cases}0 & \text { for shading } \\ 1 & \text { for no shading }\end{cases}
$$

The method of determining shading is developed in appendix \mathbf{C}.
In the computation of the shape factor between a pair of plane quadrilaterals, both are divided into $\mathrm{n} \times \mathrm{n}$ grids as before, and each element of one is paired successively with each element of the other. The shading test is performed by the same scheme as for the projected areas. The shape factor $\mathbf{F}_{\mathbf{i j}}$ between surfaces i and \mathbf{j} is given by the average (taken over both surfaces) of the function ψ_{ij} :

$$
\begin{align*}
F_{i j} & =\frac{1}{A_{i} A_{j}} \int_{A_{i}} \int_{A_{j}} \psi_{i j} d A_{i} d A_{j} \\
& \approx \frac{1}{A_{i} A_{j}} \sum_{i, j} \psi_{i j} \Delta A_{i} \Delta A_{j} \\
& \approx \frac{1}{A_{i} A_{j}} \sum_{i, j} \frac{-\left(\bar{n}_{i} \cdot \bar{r}_{i j}\right)\left(\bar{n}_{j} \cdot \bar{r}_{i j}\right)}{\pi r_{i j}^{4}}\left(I_{S h}\right)_{i j} \Delta A_{i} \Delta A_{j} \tag{26}
\end{align*}
$$

The position vector $\bar{r}_{i j}$ is given by $\bar{r}_{j}-\bar{r}_{i}$, where \bar{r}_{i} and \bar{r}_{j} are the position vectors of the centroids of the elemental areas ΔA_{i} and ΔA_{j}. The same formulas as for the projected-area routine are used for the area of ΔA_{i} and its centroid \bar{r}_{i}.

If a surface k is nonplanar and is approximated by a set of N planar surfaces, then μ_{k} is

$$
\begin{equation*}
\mu_{k}=\frac{\sum_{i=1}^{N} \mu_{i} A_{i}}{\sum_{i=1}^{N} A_{i}} \tag{27}
\end{equation*}
$$

and $F_{k j}$ between the nonplanar surface and any other surface j is

$$
\begin{equation*}
F_{k j}=\frac{\sum_{i=1}^{N} A_{i} F_{i j}}{\sum_{i=1}^{N} A_{i}} \tag{28}
\end{equation*}
$$

In this investigation the nodal surfaces into which a spacecraft is divided are called panels. A large member may be divided into several pieces to conform more nearly to the assumption of constant temperature over each panel. Surfaces of the spacecraft which can intercept thermal radiation which otherwise would impinge on any of the panels are called shaders. There will be fewer shaders than panels if any of the plane surfaces is subdivided into more than one panel.

EXAMPLE PROBLEM

An example of the application of the computer program is the prediction of temperatures on the proposed Meteoroid Technology Satellite. Figure 1 is a photograph of a model of the spacecraft shown attached to the last stage of its booster, with meteoroiddetector panels deployed. The cubical modules attached to the central structure are experiments for measuring velocities of meteoroids. The octagonal prism at the top is mainly solar cell area. In this example, the spacecraft is spinning about its axis of symmetry.

The projected areas and shape factors are calculated in separate programs to be used later as inputs to the temperature-prediction program. The Cartesian coordinates of panel corners and shader corners are used as input for the projected-area and shape factor programs. Actual areas of the panels are also provided by the projected-area program as input to the main program.

Direct inputs to the main program are absorptivities for solar radiation, hemispherical emissivities, the product of mass and specific heat for each panel, radiation
coefficients between back-to-back panels, and orbit and spacecraft-attitude parameters. A circular orbit with an altitude of 300 nautical miles (556 km) and an inclination of 38° to the equator was assumed.

In this example, 104 nodes were used. No conduction is accounted for in this example. Because of the small thicknesses and large surface areas of the nodes, radiation will outweigh conduction by far.

It was necessary to use a very small time increment (0.05 min) in the numerical integration of the temperatures. Some of the nodes consist of a sheet of plastic film 0.00025 inch (0.00064 cm) thick, with a very small thermal capacity; therefore, the solution is unstable for larger time increments.

The temperatures all converged within two or three orbits, without oscillation, to a solution which repeated itself on subsequent orbits. The temperatures compare reasonably with those obtained by a similar heat-transfer computer program which does not take multiple reflections into account.

The temperature history is plotted for seven nodes, whose locations are indicated in figure 1. The temperature plot for the outer face of one of the upper velocity detectors (see fig. 2) follows the heat inputs to it very closely because it has very low thermal inertia. At the far left of the plot, the decline from maximum value of the earth albedo and earth thermal fluxes is noted, while the solar input remains constant. The computed value of the albedo and earth thermal flux declines to zero at about 24 min after perigee, after which the albedo remains zero and the earth thermal flux increases. At about 31 min, the spacecraft enters the earth's shadow. During shadow, the earth thermal flux passes through a maximum and goes to zero again at about 71 min . Sunlight appears again at about 66 min . Albedo flux increases from zero at around 71 min to a maximum about midway through the sunlit period. The times of maximums and minimums in the thermal fluxes incident from external sources and in the temperature do not coincide exactly, since the node receives radiation from other parts of the spacecraft also.

Figures 3 and 4 show the temperature variation over the orbit for a horizontal detector and a vertical detector, respectively. A schematic illustration of the cross section of these meteoroid detectors is given in figure 5, with the bumper shields on each side shown.

CONCLUDING REMARKS

A method has been developed for the thermal analysis of geometrically complicated spacecraft whose surfaces can be approximated by plane quadrilaterals with gray surfaces having diffuse reflection and radiation properties. Optical blocking between surface
elements is accounted for automatically. Multiple diffuse reflections are also accounted for. Listings of the computer programs which perform the calculations are included.

Langley Research Center, National Aeronautics and Space Administration, Hampton, Va., May 1, 1970.

APPENDIX A

COMPUTER PROGRAM LISTINGS

Spacecraft Temperature Program

PROGRAM ORETEMP (INPUT OUTPUT •TAPE5=INPUT •TAPEG=OUTPUT)
0090
HEAT TRANSFER PROGRAM FOR DIFFUSE RADIATION ON MULTIPANELED SPACECRAFTOBO
DIMENSION AR1 (104), AR2 (104), AP1 (104), APP1 (104), APP2 (104).CSH(104), 1ETAS (104),ETAE (104),FSP1(104,104),FSPP1(104,104),FSPPC(104.104), 2HCOND (104,104),WATE (104), RRAD (104,104), T(104),XMU(104),TETAS(20). 3YMU(104). TXMU(104.20), TTXMU(20).DT(104).THELAM(3.3),URTH(3.3).
4
IPIVOT (104), INDEX(104.2)
DIMENSION BTHETA(20).BALPHA (20), BSETA(20),RM3PN(3.3).RM1I(3.3). 1RM3OP (3.3), RM3A(3.3), RM1B(3.3), RM2O(3.3), RM3NTH(3.3),RMOB(3.3)* 2RMEB (3.3), UVEC(3.104), VEC(3)
DIMENSION XMUSUN(42, 7,19),TPHIS(36),PHIS(36),AXISI(
13.50), AXIS2(3.50), TXMUS (360), VE1 (3), VE2 (3)
DIMENSION VE3(3), RMIPHI (3.3), RMPIF(3.3)
DIMENSION PHIE(104)
FORMAT (12F6.2)
15 FORMAT(5E16.8) 0930
16 FORMAT (6F13.3) 0940
17 FORMAT (2X.1OE12.5)
0950
18 FORMAT(//6H TIME=E15.8.18X.22HINTERNAL TEMPERATURE =E15.6/) O960
19 FORMAT ($1 \mathrm{H} 1,9 \times, 9 H T I M E(M I N), 7 \times, 14 H T H E T A(R A D I A N S), 5 \times, 15 H A L T I T U D E(M I L E \quad O 97 O$

```

```

0980
FORMAT(1H1.1OX.14HVALUES OF UVEC//)
0990
24 FORMAT(1H1,10X.14HPROGRAM INOUTS//)
1000
25 FORMAT $(2 \times, 6 E 20.6)$
1010
1984 FORMAT (3(214,E16•8))
10101 FORMAT (7F11.8)
1856 FORMAT (7110)
1905 FORMAT (8E16.8)
NTIME = 1
READ (5.1856) NPANEL, NFAC,NHCOND, NRRAD,NINSFC, IFTLUP,ISPIN
DO $3 \quad I=1$, NPANEL
AR2 (I) $=0$ 。
$A P P 2(1)=0$.
DO $3 \mathrm{~J}=1$, NPANEL
HCOND $(I, J)=0$.
FSPI (I, J) $=0$ 。
FSPP $1(1, J)=0$.
3
FSPP2 (I $\cdot J)=0$ -
READ (5.1856) KEXT,KINT,KRRAD.KHCOND
READ (5,15)RADE, ALT,VELTO,VELRO,TI.DTI.TID,S 1030
READ (5.15)TE,BOLT,G,AU,RE
1322 FORMAT 1 HOS8HSOLAR CONSTANT, S-E CONSTANT,EARTH TEMP., EARTH REFLECT

```

\section*{APPENDIX A - Continued}
```

 IIVITY)
 WRITE(6.1322)
 WRITE(6.17) S.BOLT,TE,RE
 READ(5,15)ARETA,AINCE,AINCO,ALPHA,COMEGA,DOMEGA,OMEGAP,PHIN,THETAO
 IF(IFTLUP) 11.11•12
 12 READ(5.15)BALPHA
READ(5.15)BEETA
READ(5.15)BTHETA
11 READ(5.15) (AR1 (J),J=1.NPANEL)
READ(5.14) (AP1 (J).J=1.NPANEL)
READ(5,14) (APP1(J):J=1,NPANEL)
READ(5.14) (CSH(J),J=1.NPANEL)
READ(5.14) (WATE(J):J=1,NPANEL)
WRITE(6.1313)
1313 FORMAT(1HO1OHEXT. AREAS)
WR1TE(6,17) AR!
1314 FORMAT(1HO25HEXT. SURF. ABSOR?TIVITIES)
WRITE(6.1314)
WRITE(6.17) AP1
1316 FORMAT(1HOZ3HEXT. SURF. EMISSIVITIES)
WRITE(6,1316)
WRITE(6.17) APPI
1318 FORMAT(1HOTHWEIGHTS)
WR1TE(6.1318)
WRITE(6.17) WATF
1320 FORMAT(1HO14HSPECIFIC HEATS)
WRITE(6.1 320)
WRITE(6.17) CSH
READ(5,14) (T(J),J=1,NPANEL)
IF(KEXT.EQ.O) GO TO 1111
DO 1492 K=1.NFAC
READ(5,1984) I1,J1,FSPP1(I1.J1).I2.J2.FSPP1(I2.J2),I 3.J3.FSPP1(I 3.
1J3)
FSPP1(J1,I1)=FSPP1(I1,J1)
FSPP1(J2,I2)=FSPP1(12.J2)
1492 FSPP1(J3,13)=FSPP1(13,J3)
DO 1776 I=1,NPANEL
DO 1776 J=1.NPANEL
FSP1(I,J)=FSPP1(I,J)*AR1(J)
FSPP1(I,J)=FSP1 (I J)
RRAD(I,J)=-FSP1(I*J)*(1\bullet-AP1(J))
1776 IF(I.EQeJ) RRAD(I,J)=RRAD(I!J)+1.
CALL SIMEQ(RRAD,NPANEL.FSPI.NPANEL,DETERM.IPIVOT, 104.ISCALE)
1861 FORMAT(1H160\times6HFSP1-S////)

```

\section*{APPENDIX A - Continued}
```

 WRITE(6.1861)
 WRITÉ(6.1905) ((FSP1(J,K),K=1,NPANEL) ,J=1, NPANEL)
 DO 1849 I=1.NPANEL
 DO 1849 J=1,NPANEL
 RRAD(I,J)=-FSPP1(I,J)*(1\bullet-APP1(J))
 1849 IF(I\bulletEQ.J) RRAD(I |J)=RRAD(I|J)+1.
CALLSIMEQ(RRAD,NPANEL FSPP1,NPANEL.DETERM,IPIVOT,104,ISCALE)
1862 FORMAT(1H160\times7HFSPP1-S///)
WRITE(6.1862)
WRITE(6.1905) ((FSPP1(J,K)*K=1,NPANEL),J=1,NPANEL)
1111 CONTINUE
RADO = RADE + ALT 1120
THETA = THETAO 1130
P RADO*VELTO 1140
COSEGA =COS (COMEGA)
SINEGA=SIN(COMEGA)
COINCE=COS(AINCE)
SINCE=SIN(AINCE)
IF(KINT.EQ.O) GO TO 1033
READ(5:14)(AR2 (J):J=1 *NPANEL)
READ(5.14) (APP2(J):J=1,NPANEL)
DO 7011 I=1.NINSFC
READ(5.1984) I1.J1.FSPP2(I1.J1).I2.J2.FSPP2(I2.J2),I3.J3.FSPP2(I3.
1」3)
FSPP2(J1.11)=FSPP2(11*J1)
FSPP2(J2,I2)=FSPP2(12,J2)
7011 FSPP2(J3.13)=FSPP2(13.J3)
DO 1929 I=1.NPANEL
DO 1929 J=1,NPANEL
FSPP2(I,J)=FSPP2(I|J)*AR2(J)
RRAD(I.J)=-FSPP2(I,J)*(I*-APP2(J))
1929 IF(I.EQ.J) RRAD(I,J)=RRAD(I!J)+1.
CALLSIMEQ(RRAD.NPANEL,FSPP2,NPANEL,DETERM.IPIVOT,104.ISCALE)
1863 FORMAT (1H160X7HFSPP2-S///)
WRITE(6.1863)
WR1TE(6.1905) ((FSPP2(J.K),K=1,NPANEL),J=1.NPANEL)
1033 IF(KHCOND.EQ.O) GO TO 1030
DO 1010 1=1.NHCOND
READ(5,1984)I1,J1.HCOND(II,J1),I2.J2.HCOND(I2.J2),I3.J3.HCOND(I3.J
13)
HCOND(J1.11)=HCOND(11.J1)
HCOND(J2.12)=HCOND(12,J2)
HCOND(J3,I3)=HCOND(13:J3)
1010 CONTINUE

```

\section*{APPENDIX A - Continued}
```

1324 FORMAT(1H123HCONDUCTION COEFFICIENTS)
WRITE(6,1324)
WRITE(6,17) HCOND
1030 CONTINUE
DO 207 1=1 .NPANEL
DO 207 J=1 NPANEL
207 RRAD(I,J)=0.
IF(KRRAD.EG.O) GO TO 102O
DO 1011 I=1,NRRAD
READ(5,1984)I1,J1,RRAD(I1,J1),I2•J2.RRAD(I2,J2),I3,J3,RRAD(I3,J3)
RRAD(J1,11)=RRAD(I1\&J1)
RRAD(J2.12)=RRAD(12.J2)
RRAD(J3.13)=RRAD(I3.J3)
1011 CONTINUE
1020 CONTINUE
READ(5,1856) NETAS.NPHIS
IF(ISPIN) 1312.1312.1311
1311 DO 420 1=1,NPANEL
420 READ(5.10101) (TXMU(1,J),J=1.NETAS)
4891 FORMAT(1HO12HMU BAR TABLE)
WRITE(6.4891)
WRITE(6,17) ((TXMU(I,J),J\#1,NETAS),I=1,NPANEL)
1312 READ(5.14) (TETAS(M),M=1,NETAS)
4893 FORMAT(1HO1OHETAS TABLE)
WRITE(6.4893)
WRITE(G,17) (TETAS(M),M=1 NETAS)
DO 7 M=1,NETAS
7 TETAS(M)=TETAS(M)*.0174532925
IF(ISPIN.EG.1) GO TO 103
532 DO 4 I=1,NPANEL
DO 4 J=1.NETAS
READ(5.10101) (XMUSUN(I,J.K).:<=1,NPHIS)
4 8 9 5 ~ F O R M A T (1 H 1 2 O H M U (E T A S . P H I S) ~ T A B L E S) ,
WRITE(6,4895)
DO 2849 I=1 NPANEL
DO 2849 J=1.NETAS
2849 WRITE(6,1701) (XMUSUN(I,J,K),K=1,NPHIS)
1701 FORMAT(///2X.1OE12.5)
READ(5.14) (TPHIS(NP),NP=1,NPHIS)
4897 FORMAT(1HO1OHPHIS TABLE)
WRITE(6.4897)
WRITE(6,17) (TPHIS(NP),NP=1,NPHIS)
DO 246 M=1 NPHIS
246 TPHIS(M)=TPHIS(M)*.01745329252

```

\section*{APPENDIX A - Continued}
```

 531 READ(5,16) ((AXIS1(K,J),K=1,3),J=1*NPANEL)
 READ (5,16) ((AXIS2(K,J),K=1,3),J=1,NPANEL)
 READ(5,16) ((UVEC(K,J),K=1,3),J=1,NPANEL)
 DO 8 L=1.NPANEL
 STOR=AXISI(1,L)
 AXISI(1,L)=AXISI(2,L)
 AXIS1(2,L)=AXIS1(3,L)
 AXIS1(3.L)=STOR
 STOR=AX!S2(1.L)
 AXIS2(1.L)=AXIS2(2.L)
 AXIS2(2,L)=AXIS2(3,L)
 AXIS2(3.L)=STOR
 STOR=UVEC(1,L)
 UVEC(1,L)=UVEC(2,L)
 UVEC (2,L)=UVEC(3,L)
 8 UVEC (3,L)=STOR
 C
C
C
C
C
C
103 CALL ROTMTX(RM3PN, 3.PHIN)
CALL ROTMTX(RMII,1.AINCO)
CALL ROTMTX(RM3OP,3.OMEGAP)
CALL MULT(RMIPHI,RM1I,RM3PN)
CALL MULT(RMPIF,RM3OP,RMIPHI)
100 IF(IFTLUP) 102.102.101
101 CALL FTLUP(THETA,ABETA,1,20.BTHETA,BBETA) 166O
CALL FTLUP(THETA,ALPHA,1,20,BTHETA,BALPHA) 1670
102 SINTHE = RADE/RADO 1680
COSTHE =(1.-SINTHE**2)***5
OMEGA=TI*DOMFGA 1. 1690
THETAN=-THETA
CALL ROTMTX(RM3NTH.3.THETAN)
CALL ROTMTX(RM3A,3.ALPHA)
CALL ROTMTX(RM1B,1.ABETA)
CALL ROTMTX(RM2O.2.OMEGA)
C
C MULT(MP.M1,M2) MULTIPLIES 3\times3 MATRICES M1 AND M2,GIVING (MP)=(M1)(M2)
C
CALL MULT(RMEB,RM3A.RMPIF)
CALL MULT(RMEB,RMIB,RMEB) 2540
CALL MULT(RMEB,RM2O,RMEB) 2550

```

APPENDIX A - Continued

C ROTATIONMES IS COMPLETED C WITH PLANET SPIN AXIS•X-AXIS PASSES THROGH THE VERNAL EQUINOXI TO COINCIDE C WITH THE SPACECRAFT BODY AXES
\(c\)
Do \(170 \mathrm{~J}=1 \cdot 3\)
\(170 \operatorname{VEC}(J)=R M E B(J, 1) * C O S E G A+R M E B(J \cdot 2) * S I N E G A * C O I N C E+R M E B(J * 3) * S I N E G A *\)
1 SINCE
CALL MULT (RMOB,RM3A.RM3NTH)
CALL MULT (RMOB, RMIB,RMOB)
CALL MULT (RMOB,RM2O,RMOB)
\(c\)
\(C\) ROTATION MATRIX RMOB GIVES ORBIT POSITION COLUMN 1 GIVES COMPONENTS OF UNIT

IF (ISPIN.EQ.1) GO TO 1
DO \(160 \quad I=1\). NPANEL
DO \(9 \mathrm{~J}=1.3\)
VE1 (J) =AXIS1(J, 1)
\(9 \quad \operatorname{VE2}(J)=A \times 1 S 2(J, I)\)
COSE = -UVEC (1.1)*RMOB(1.1)-UVEC(2,1)*RMOB(2.1)-UVEC(3,1)*RMOB(3.1)
SINE \(=(1 .-\operatorname{COSE} * \operatorname{COSE}) * * \cdot 5\)
IF ( COSE •LT••IE-7) ETAE (I)=1.57079633
IF ( COSE •GE••IE-7) ETAE (I)=ATAN2 (SINE.COSE)
IF ( \(1 .-A B S(C O S E)) \bullet L T \cdot 1 \cdot E-8)\) GO TO 1809
\(\operatorname{COSE}=-\operatorname{RMOB}(1,1) * V E 1(1)-\operatorname{RMOB}(2.1) * V E 1(2)-R M O B(3.1) * V E 1\) (3)
SINE=-RMOB(1.1)*VE2(1)-RMOB(2,1)*VE2(2)-RMOB(3.1)*VE2(3)
PHIE (I) =ATAN2 (SINE, COSE)
GO TO 1810
1809 PHIE (I) \(=0\).
1810 CONTINUE
COSE = UVEC (1, 1)*VEC(1)+UVEC(2.1)*VEC(2)+UVEC(3.1)*VEC(3)
\(\operatorname{SINE}=(1 \cdot-\operatorname{COSE} * \operatorname{COSE}) * * \cdot 5\)
IF ( COSE •LT. . IE-7) ETAS (I) \(=1.57079633\)
IF ( COSE •GF..IE-7) ETAS (I)=ATAN2 (SINE.COSE)
IF ( \(1 \cdot-\mathrm{ABS}(\mathrm{COSE})\) ) \(\llcorner\) L•1•E-8) GO TO 1918
\(\operatorname{COSE}=V E 1(1) * V E C(1)+V E 1(2) * V E C(2)+V E 1 \cdot(3) * V E C(3)\) SINE = VE2 (1) *VEC (1) +VE2 (2)*VEC (2) +VE2 (3)*VEC (3) PHIS (I)=ATAN2 (SINE,COSE)
GO TO 160
1918 PHIS(I)=0.
160 CONTINUE
2620
GO TO 2
1 CONTINUE

\section*{APPENDIX A - Continued}
```

 COSE=VEC(2)
 SINE=(1.-COSE*COSE)**.5
 IF(ABS(COSE).LT..1E-7) ETASUN=1.57079633
 IF(ABS(COSE).GE..1E-7) ETASUN=ATAN2(SINE,COSE)
 COSE=-RMOB (2.1)
 SINE=(1--COSE*COSE)***5
 IF(ABS(COSE).LT.. 1E-7) ETARTH=1.57079633
 IF(ABS(COSE).GE..1E-7) ETARTH=ATAN2(SINE,COSE)
 DO 6 l=1,NPANEL
 ETAS(I)=ETASUN
 ETAEIIj=ETARTH
 2 CONTINUE
 AMP=RMOE(1,1)*VEC(1)+RMOB(2,1)*VEC(2)+RMOB(3,1)*VEC(3)
 H=1.0
 2730
 IF(-AMP.GT.COSTHE) H=0.O
 2740
 IF(AMP.LT.O.O) AMP =0.0
 c
DO 1000 J=1.NPANEL
IK=0
IF(ISPIN) 1357.1357.1358
1357 DO 680 I=1.NETAS
DO 680 K=1.NPHIS
IK=IK+1
680 TXMUS(IK)=XMUSUN(J.I,K)
NY=NETAS*NPHIS
CALL DISCOT(ETAS(J),PHIS(J),TETAS,TXMUS,TPHIS,22,NY,NPHIS•XMU(J))
CALL DISCOT(ETAF(J),PHIE(J),TETAS,TXMUS,TPHIS,2Z,NY,NOHIS,YMU(J))
GO TO 1000
1358 DO 1001 1=1,NETAS
1001 TTXMU(1)=TXMU(J.I)
CALL FTLUP(ETAS(J).XMU(J),Z.NETAS.TETAS,TTXMU)
CALL FTLUP(ETAE(J),YMU(J),2,NETAS.TETAS,TTXMU)
1000 CONTINUE

* AT thIS POINT PROJECTED AREAS FOR SOLAR AND PARENT bODY ARE AVAILABLE
DO 1002 I=1,NPANEL
DT(I)=H*S*AR1(1)*XMU(I)*API(I)+BOLT*TE**4*SINTHE**2*ARI(I)*YMU(I)
1*APP1(I)+S*RE*AMP*SINTHE**2*AR1(I)*YMU(I)*AP1(I)
c
C (DIR. SOLAR+DIR. PIANET EMISSION+ PLANET-REFLECTEO SOLAR)
c
TEMP=0.
DO 1003 K=1.NPANEL
TEMP=TEMP+(APP1(K)*BOLT*T(K)**4+BOLT*TE**4*SINTHE**2*YMU(K)*(1.-
1APP1(K))) *FSPP1(I*K)*AR1(I)*APP1(I)

APPENDIX A - Continued

```
    1003 CONTINUE
C
C (TEMP ADDS EXTERIOR LONG WAVELENGTH CONTRIB. TO PANEL I FROM ALL PANELS.
                                    DIRECTLY AND BY ALL MULTIPLE DIFFUSE REFLECTIONS. CONSISTS OF
                        EXT. THERMAL EMISS. BY PANELS + REFLECTED PORTION OF PLANET EM
        SFMP=0.
        DO 1004 K=1.NPANEL
            SEMP=SEMP+(H*S*XMU(K)+S*RE*AMP*SINTHE**2*YMU(K))*(1\bullet-AP1(K)
        I *FSP1(I.K)*AR1(I)*ARI(I)
    1CO4 CONTINUE
C
C ISEMP ADDS SOLAR SPECTRUM CONTRIB. FROM ALL PANELS INCL. ALL REFLECTIONS
                                    CONSISTS OF PANEL-REFLECTED PORTION OF DIR. AND PLANET-REFL. SOLAR
        UEMP=O.
        DO 1005 K=1,NPANEL
        UEMP=UEMP+BOLT*APP2(K)*T(K)**4 *FSPPZ(I,K)*ARZ(I)*APP2(I) 2995
    1005 CONT INUE
C
C IUEMP ADOS INTERIOR LONG WAVELENGTH CONTRIB. TO I IF IT IS PART OF AN
                ENCLOSURE - CONSISTS OF EMISSIONS AND ALL REFL. FROM SURF. OF
                    ENCLOSURE)
    VEMP=0.
    DO 1006 K=1.NPANEL
    VEMP=VEMP+HCOND(K.!)*(T (K)-T(I))
    1006 CONTINUE
C
C (VEMP IS THE CONDUCTION TO I,
C
    WEMP=0.
    DO 1007 K=1,NPANEL
    WEMP=WEMP+RRAD(K,I)*(T(K)**4-T(I)**4)
1007 CONTINUE
    WEMP=WEMP*AR1(I)
C
C
C
    XEMP=-BOLT*T(1)**4*(ADP1(I)*AR1(1)+APPZ(1)*AR2(1))
    (XEMP GIVES LOSS BY EMISSION FROM I )
```

```
        DT(1)=DT (I)+TEMP+SEMP+UEMP+VEMP+WEMP+XEMP
        DT(I)=DT(I)/WATE(I)/CSH(I)
1002 CONTINUE
    DO 9843 I=1,NPANEL
9843 T(I)=T(I)+DT(I)*DTI
    1F(MOD(NTIME,1OO).EQ.O)GO TO 113
    GO TO 114 3100
113 CONTINUE
    WRITE(6.17) (T(1),I=1,NPANEL)
114 IF(TI&LT.TID) GO TO 99 3140
        GO TO 999 3150
C
C ROUTINE TO CALCULATE RADIUS IN ELLIPTICAL ORBIT} 317O
3160
C
99 CONTINUE
3180
3190
    DDTI=\bullet1*DTI
    DO 992 J=1.10 3200
    ACCEL = (P**2)/RADO**3 -G*(RADE/RADO)**2 3220
    ACCELI =ACCEL 3230
    DO 991 I = 1.5 3250
    RAD1=RADO+VELRO*DDTI+(2.*ACCEL+ACCEL1)*DDTI**2/6.
    VELR1=VELRO+*5* (ACCEL+ACCEL 1)*DDTI
    991 ACCEL1 = (P**2)/RADI**3 - G*(RADE/RAD1)**2 3290
    RADH = RAD1-RADE 3300
    ANVFLO =P/RADO**2 3310
    ANVELI = P/RADI**2 3320
    THETA = THETA + (ANVELO+ANVEL1)/2.0*(DTI/10.0)}333
    RADO = RAD1 3340
    992 VELRO = VELR1 3350
    RATIO = RADH/ALT 3360
    HIHT = RADH/5280.0 3380
    TI=DTI*FLOAT (NTIME)
    IF(MON(NTIME.20).NE.O) GO TO 30
    WRITE(6.25) TI,THETA,HIHT,H,AMP,ETAS(1)}339
    3) NTIME=NTIME+1
    GO TO 100 3400
```



```
    END 3420
    SUBROUTINE ROTMTX(ROTOR.M.ROTANG)
    DIMENSION ROTOR(3,3)
    ROTOR(M,M)=1.O
    COSE=COS(ROTANG)
    SINE=SIN(ROTANG)
    DO 1 I = 1. 3
```

```
```

 IF(I.EQ.M) GO TO I
    ```
```

 IF(I.EQ.M) GO TO I
 ROTOR(I,M)=.0
 ROTOR(I,M)=.0
 ROTOR(M,I)=.0
 ROTOR(M,I)=.0
 ROTOR(I:I)=COSE
    ```
    ROTOR(I:I)=COSE
```3450
```

DIMENSION $A(3,3) \cdot B(3,3) \cdot C(3,3) \cdot D(3,3)$

```DO \(1 \quad \mathrm{I}=1 \cdot 3\)3470
```

DO $1 \quad J=1.3$ ..... 3480

```
 CONTINUE
```

    CONTINUE
        IF(M.EQ.1) GO TO 2
        IF(M.EQ.1) GO TO 2
        IF(M.EQ.2) GO TO 3
        IF(M.EQ.2) GO TO 3
    ROTOR(1,2)=S INE
    ROTOR(1,2)=S INE
    ROTOR(2.1)=-SINE
    ROTOR(2.1)=-SINE
    RETURN
    RETURN
    ROTOR(2,3)=S INE
    ROTOR(2,3)=S INE
        ROTOR(3.2)=-SINE
        ROTOR(3.2)=-SINE
        RETURN
        RETURN
        ROTOR(1.3)=-SINE
        ROTOR(1.3)=-SINE
        ROTOR(3.1)=SINE
        ROTOR(3.1)=SINE
        RETURN
        RETURN
        END
        END
    SUBROUTINE ROTMTX CALCULATES THE ELEMENTS OF A ROTATION MATRIX,GIVFN THE
    SUBROUTINE ROTMTX CALCULATES THE ELEMENTS OF A ROTATION MATRIX,GIVFN THE
        AXIS NO. AND THE CCW ANGLE OF ROTATION
        AXIS NO. AND THE CCW ANGLE OF ROTATION
        SUBROUTINE MULT (A,B,C)
        SUBROUTINE MULT (A,B,C)
    D(1,J)=0.0
    D(1,J)=0.0
    DO 1 K=1.3
    DO 1 K=1.3
    1D D(I,J)=D(I,J)+B(I,K)*C(K,J)
1D D(I,J)=D(I,J)+B(I,K)*C(K,J)
DO 2 I =1.3
DO 2 I =1.3
DO 2 J=1.3
DO 2 J=1.3
2A(I:J)=D(1,J)
2A(I:J)=D(1,J)
RETURN 3550
RETURN 3550
END 3560

```
 END 3560
```


## APPENDIX A - Continued

Definitions and Instructions for the Temperature Program

HEAT TRANSFER PROGRAM FOR DIFFUSE RADIATION ON MULTIPANELED SPACECRAFTOBO
SYMBOLS USED IN PROGRAM
ABETA ANGLE OUT OF ORBIT PLANE OF SPIN AXIS (YAW)
AINCE ANGLE BETWEEN ECLIPTIC PLANE AND EQUATORIAL PLANE 0140
AINCO ORBIT INCLINATION ANGLE 0150
ALPHA NEGATIVE ELEVATION ANGLE (PITCH) 0160
$A L T$ ALTITUDE OF SPACECRAFT (FT) 0170
AMP FOR DAYLIGHT, AMP=COS (ANGLE BETWEEN LINES TO THE SUN AND SPACECR AFT DRAWN FROM THE CENTER OF THE EARTH) FOR DARKNESS AMP $=0$
API (J) ABSORPTIVITY OF EXTERNAL CAVITY TO P ENERGY.DIMENSIONLESS
APPI (J) ABSORPTIVITY OF EXTERNAL CAVITY TO PP ENERGY.DIMENSIONLESS APPZ (J) ABSORPTIVITY OF INTERNAL CAVITY TO PP ENERGY, DIMENSIONLESS
ARI (J) EXTERNAL CAVITY AREA. INCH SQUARE
AR2(J) INTERNAL CAVITY AREA.INCH SQUARE
AU DISTANCE FROM SUN (ASTRONOMICAL UNITS) 0200
$A X I S 1$
UNIT VECTOR IN PLANE OF PANEL
AXIS2 CROSS PRODUCT OF UVEC AND AXISI
BALPHA PITCH TABLE (20 PARTS) 0240
BBETA YAW TABLE ( 20 PARTS) 0250
BTHETA ORBIT ANGLE TABLE (20 PARTS) 0260
BOLT STEFAN-BOLTZMANN CONSTANT
COMEGA SUN ANGLE IN ELLIPTIC PLANE FROM VERNAL EQUINOX O320
CSH(J) SPECIFIC HEAT OF JTH COMPONENT, BTU/POUND/DEG
DDEL TIME DERIVATIVE OF ORBIT ANGLE (RADIANS/MIN) 0340
DEL ORBIT ANGLE (RADIANS) 0350
DOMEGA SPIN RATE OF SPACECRAFT ABOUT 2-AXIS
DT (I) TEMPERATURE INCREMENT OF THE ITH PANEL 0370
DTI TIME INCREMENT (MIN) 0380
EPI ANGLE OF SUN OUT OF ORBIT PLANE 0390
ETAE (J) PARENT BODY ASPECT ANGLE
ETAS(J) SOLAR ASPECT ANGLE
THE SHAPE FACTORS INPUT TO THE PROGRAM ARE ONLY GEOMETRIC. THE FACTORS WHICH TAKE INTO ACCOUNT ALL REFLECTIONS AND ALL RE-REFLECTIONS ARE COMPUTED IN THE PROGRAM USING GEOMETRIC FACTORS AND THE REFLECTIVITIES OF EACH NODE

FSPI (K.J) EXTERNAL SHAPE FACTOR ELEMENT FOR P ENERGY / /INCH SQUARE
FSPPI (K.J) EXTERNAL SHAPE FACTOR ELEMENT FOR PP ENERGY, /INCH SQUARE
FSPPZ(K.J) INTERNAL SHAPE FACTOR ELEMENT FOR PP ENERGY. /INCH SQUARE G ACCELRATION OF GRAVITY (FT/MIN**2) 0420 H SUN INDICATOR•DIMENSIONLESS
HCOND (K.J) LINEAR HEAT CONDUCTION COEF.BTU/MIN/DEG
IFTLUP INTFGER TO INDICATE USE OF BEETA.BTHETA\&BALPHA 0490 USE O FOR CONSTANTS AND 1 FOR TABLES 0500
ISPIN IS ZERO FOR A STABILIZED VEHICLE,NON-ZERO FOR SPINNING.

```
KEXT,KINT,KRRAD,AND KHCOND INDICATE WHETHER THERE ARE NON-ZERO ELEMENTS OF
 FSP1/FSPP1,FSPP2,RRAD,AND HCOND RESPECTIVELY
 NETAS NO. OF VALUES IN TABLE OF ETAS
NFAC IS THE NO OF CARDS USED TO LOAD THE NON-ZERO GEOMETRIC SHAPE FACTORS
 BETWEEN EXTERNAL SURFACES(3 TO A CARD)&FSPPI IS INITIALLY USED AS A DUMMY
 NAME FOR THIS ARRAY.
NHCOND IS SIMILARLY THE NO. OF CARDS FOR HCOND,NRRAD FOR RRAD,NINSFC FOR THE
 INTERNAL GEOM. SHAPE FACTORS(READ IN AS FSPPZ).
 NPANEL NUMBER OF PANELS O510
 NPHIS NO. OF VALUES IN TABLE OF PHIS
 OMEGA ROLL ANGLE OF BODY
 OMEGAP ARGUMENT OF PERIGEE O530
 P DENOTES SOLAR SPECTRUM,PP DENOTES THERMAL RADIATION SPECTRUM PEAKING A
 T MUCH LONGER WAVELENGTHS
 PHIN ARGUMENT OF ASCENDING NODE 0560
 PHIS(J) SOLAR AZIMUTH ANGLE
 RADE EARTH RADIUS (FT) 0590
 RADH ALTITUDE OF SPACECRAFT (FT) 0600
 RADO INJECTION RADIUS OF ELLIPTICAL OREIT (FT) OGIO
 REFE REFLECTIVITY OF PARENT BODY TO SOLAR ENERGY,DIMENSIONLESS
RRAD(K.J) RADIATION COEFFFICIENT,WITH NET HEAT TRANSFER RATE=
 AREA*RRAD(K.J)*(T(K)**4-T(J)**4)
 S SOLAR CONSTANT.BTU/INCH SQUARE/MINUTE
 SINTHE SINE OF THE EARTH VIEW ANGLE 0690
 T(J) TEMPERATURE OF JTH COMPONENT.DEG
 TE TEMPERATURE OF P,ARENT BODY.DEG
 TETAS.TPHIS.TXMU.TXMUS TABLES OF ETAS.PHIS.XMU
 THETA ORBIT ANGLE FROM PERIGEF 0720
 THETAO INITIAL THETA (ARBITRARY) 0730
 TI TIME (MIN) 0760
 TID CALCULATION TIME LIMIT OT70
 UVEC UNIT NORMAL VECTOR TO PANEL
 VELRO INJECTION VELOCITY NORMAL TO THE EARTH (FT/MIN) O81O
 VELTO INJECTION VELOCITY TANGENTIAL TO THE EARTH(FT/MIN) O8ZO
 WATE(J) MASS OF JTH COMPONENT.POUNDS
 XMU(J) UNIT PROJECTED AREA.DIMENSIONLESS.SOLAR
 XMUSUN(K.I,J) TABLE OF XMU OF EACH PANEL FOR GIVEN ETAS AND PHIS
 YMU(J) UNIT PROJECTED AREA, DIMENSIONLESS,PARENT BODY
```

ARRAY DIMENSIONS FOR AN INDIVIDUAL CASE ARE-
BTHETA, BALPHA, BRETA-SIZE OF TABLES OF PITCH AND YAW VERSUS ORBIT ANGLE.
UVEC (3, NPANEL)
AR 1.AR2, AP1, APP 1, APP2, CSH, ETAS.ETAE-ALL (NPANEL) •

C
C

```
PROGRAM OUTPUT-
 1. IF(KEXT.NE.O).(8E16.8) FSPI,FSPP1-CONVERTED TO ACCOUNT FOR REFLECTIO
 2.IF(KINT.NE.O),(8E16.8) FSPP2-ALSO CONVERTED
 3. EACH MINUTE,TI(MIN.),THETA,ALT.(STAT.MI&),H(1. FOR SUNLIT),AMP(MEA-
 SURE OF PLANET-REFLECTED SUNLIGHT),ETAS(1). (2X.6E20.6)
 4. EVERY TEN MINUTES.TEMP. OF EACH PANEL.DEG.R (2X.10E12.5)
```

Shape Factor Program

```
 PROGRAM SHAPE (INPUT, OUTPUT, PUNCH,TAZPES=INPUT, TAPEG=OUTPUT)
 SHAPE FACTOR PROGRAM FOR DIFFUSE RADIATION
THE FOLLOWING INSTRUCTIONS MUST BE FOLLOWED WHEN USING THIS PROGRAM
IN THE MAIN PROGRAM CHANGE DIMENSION STATESMENT TO READ
 DIMENSION C(M.4.3),D(N,5,3),NUMB1(M),NUMB2(N),COEFFA(L.L.4),COEFFR(L.L.4)
IN SUBROUTINE ZAP CHANGE.DIMENSION_STATEMENT TO READ
 DIMENSION Z(N.5:3)
IN SUBROUTINE AREA, CHANGE DIMENSIONS TO READ
 DIMENSION COEFFA(L.L.4),COEFFR(L.L,4)
IN SUBROUTINE BLOCK CHANGE DIMENSION STATEMENT TO READ
 DIMENSION 日(N,5,3),NUMB2 (N)
WHERE M IS THE NUMBER OF PANELS AND N IS THE NUMBER OF BLOCKING PANELS. L IS
 THE GRID SIZE.
VARIABLE DEFINITIONS,NO IS THE NUMBER OF PANELS,NBLOCK IS THE NUMBER
OF BLOCKING PANELS, C IS AN ARRAY CONTAINING THE COORDINATES OF PANELS.
D IS AN ARRAY CONTAINING THE COORDINATES OF THE BLOCKING PANELS
NUMB1 IS AN ARRAY OF THE NUMBERS ASSIGNED TO THF PLANES OF EACH PANEL
NUMBZ IS AN ARRAY OF THE NUMBERS ASSIGNED TO THE PLANES OF EACH BLOCKER
 PUNCHED OUTPUT -
 (3(2I4,E16.8)) NON-ZERO SHAPE FACTORS FOR PANELS I AND J.3 TO A CARD
 I1,J1.SHPFAC(I1,J1),I2,J2.SHPFAC(12,J2),13,J3.SHPFAC(13.J3)
 DIMENSIONC(1ON.4.3),D(75.5.3),A(4.3),B(4,3)
 DIMENSION NUMB1(100),NUMG2(75)
 DIMENSION TENT (3),NZ1(3).NZ2(3)
 DIMENS I ON .. COEFFA(10.10,4).COEFFR(10,10.4)
 COMMON/ONE/D
 COMMON/TWO/NUMBE
 COMMON /THREE/ COEFFA.COEFFR
 FORMAT(7110)
10 FORMAT(3E16.8.214)
 11 FORMAT (12F6.1)
 FORMAT (3(214.E16.8))
 READ (5,86)NO,NBLOCK
 READ(5.11)(((C (I.J.K),K=1,3),J=1,4)\bulletI=1,NO).
 READ(5.11)(((D)(1,J.K),K=1,3),J=1,4),I=1.NELOCK)
 READ (5.06)(NUMB1(1),I=1,NO)
 READ (5.86) (NUMB2 (I),I=1.NBLOCK)
 WRITE(6.5)
5 ~ F O R M A T ~ (1 H ~ 1 4 H N O . ~ O F ~ P A N E L S . 1 5 H N O . ~ O F ~ B L O C K E R S) ~
 WRITE(6,86).NO.NBLOCK
 WRITE(6.7)
 7 FORMAT (IHO1 7HPANEL COORDINATES)
```

```
 WRITE(6,11) (((C.(I,J,K),K=1,3),J=1,4),I=1,NO)
 WRITE(6.19)
 19 FORMAT(1H 19HBLOCKER COORDINATES)
 WRITE(6,11) (((D)(I,J,K),K=1,3),J=1,4),I=1,NBLOCK)
 WRITE (6,6)
 6 FORMAT (IHOIGHPANEL PLANE NOS.)
 WRITE(6,86) (NUMB1(I),I=1,NO)
 WRITE(6.8)
 8 FORMAT (1HO18HBLOCKER PLANE NOS.)
 WRITE(6.86) (NUMB2(I),I=1,NFLOCK)
 WRITE (6,9)
 FORMAT(1HI4H I4H J3X9HARFA OF ITX9HAREA OF J)
 NZ=1
 NG=5
 NG2=NG*NG
 FOURN2=FLOAT(4*NG2)
 TWON4=FLOAT (2*NG2*NG2)
 DO 75 M=1.NG
 I1=M-1
 IZ1=I1+M
 NI=NG-M
 NII=2*NI+1
 DO }75\textrm{N}=1.N
 J1=N-1
 J21=J1+N
 NJ=NG-N
 NJI=2*NJ+1
 COEFFA(M,N,1)=FLOAT(NI*NJ+(NI+1)*(NJ+1))/TWON4
 COEFFA(M,N,2)=FLOAT(I1*(NJ+1)+M*NJ)/TWON4
 COEFFA(M,N,3)=FLOAT((NI+I)*JI+NI*N)/TWON4
 COEFFA(M,N,4)=FLOAT (11 *J1+M*N)/TWON4
 COEFFR(M,N*1)=FLOAT(NI1*NJ1)/FOURN2
 COEFFR(M*N,2)=FLOAT(121*NJ1)/FOURN2
 COEFFR(M,N,3)=FLOAT(I21*J21)/FOURN2
75 COEFFR(M,N,4)=FLOAT(NI1*J21)/FOURN2
 CALL ZAP(NBLOCK)
 I X =NO- ?
 DO 3 I = 1.IX
 JX=I+1
 DO 3 J=JX,NO
 DO 1 K=1.3
 DO 1 L=1.4
 A(L,K)=C(I*L*K)
1 B(L,K)=C(J.L\bulletK)
```


## APPENDIX A - Continued

```
 NA=NUMB1 (I)
 NB=NUMB1(J)
 IF(NA\cdotEQ.NB) SAR=0.O
 IF(NA.EQ.NB) GO TO 4
 CALL FAKTOR(A,B,SAB,GDA,SDB,NA,NB,NG.NFLOCK,NGZ)
 CONT INUE
 IF(SAB.GT.1.F-10)GO TO 333
 IF((I\bulletEQ.IX)•AND*(J&FQ*NO)) GO TO 333
 GO TO 3
333 TENT (NZ)=$AB
 NZ1(NZ)=I
 NZ2(NZ)=J
 WRITE(6.213) I.J.SAE
213 FORMAT(2I4.E16.8.8H VIEWFAC)
 NZ=NZ+1
 IF(NZ.EQ.4) GO TO .335
 IF((I\bulletEQ.IX)•AND•(J\bulletFQ•NO)) GO TO 335
 GO TO 3
335 PUNCH 330,NZ1(1),NZ2(1),TENT(1),NZ1(2).NZZ(2),TENT(2),NZ1(3),NZ2(3
 1), TENT(3)
 NZ=1
3 CONTINUE
 STOP
 ENO
 SUBROUTINE ZAP (NBLOCK)
 DIMENSION Z(75,5,3),C1(3),C2(3),C3(3),C4(3),C5(3),AM1(3),AM2(3),
 1V(3)
 COMMON/ONE/Z
 1=1
5 DO 1 J=1.3
 C2(J)=Z(I,2,J)-7(I,1,J)
1 C3(J)=Z(1,4,J)-Z(1,1,J)
 CALL CROSS(C5.C2.C3)
 CALL CROSS(C1,C3:C5)
 CALL DOT(DET.C1,C2)
 CALL CROSS(AM2,C2,C5)
 DO 2 K=1.3
 AM1(K)=C1(K)/DET
 2 AM2(K)=AM2(K)/DFT
 DO 3 J=1.3
 V(J)=Z(I•1,J)+Z(I, 3.J)-Z(I*2.J)-Z(I,4,J)
 C4(1)=AM 1(1)*V(1)+AM 1(2)*V(?)+AM 1(7)*V(3)
 C4(2)=AM 2(1)*V(1)+AM 2(2)*V(?)+AM 2(3)*V(3)
 C4(3)=0.
```


## APPENDIX A - Continued

```
 DO 6 J=1.3
 Z(1.2.J)=C2(J)
 Z(1.3.J)=C3(J)
 Z(1.4.J)=C4(J)
 Z(1.5.J)=C5(J)
 I=1+1
 IF(I.LT•(NBLOCK+1)) GO TO 5
 RETURN
 END
 SUGROUTINE FAKTOR(A,B.SIJ.SDA,SDE,NA,NB,NG,NELOCK,NGZ)
 DIMENSION A (4,3),E(4.3),DA(100),DE(100),RA(100.3),RE(100.3).AV(3).
 1BV(3),CV(3),DV(3),EV(3),FV(3),X(3),Y(3)
 DIMENSION XA(3),CB(3),RIJ(16,3),RDOTN(16,2),GV(3),HV(3)
 SIJ=0.0
 I=1
 DO 1 N=1.3
 AV (N)=A (1,N)
 BV(N)=A (2,N)
 CV(N)=A(3,N)
 DV(N)=B(1,N)
 EV (N)=B(2,N)
 FV(N)=B(3,N)
 GV (N)=A (4,N)
 HV(N)=B(4,N)
 RIJ(1,N)=DV(N)-AV(N)
 RIJ(2,N)=EV(N)-AV(N)
 RIJ(3,N)=FV(N)-AV(N)
 RIJ(4,N)=HV(N)-AV (N)
 RIJ(5,N)=DV(N)-RV(N)
 RIJ(G,N)=EV(N)-RV(N)
 RIJ(7,N)=FV(N)-RV(N)
 RIJ(8,N)=HV(N)-RV(N)
 RIJ(9,N)=DV(N)-CV(N)
 RIJ(1O,N)=EV(N)-CV(N)
 RIJ(11,N)=FV(N)-CV(N)
 RIJ(12.N)=HV(N)-CV(N)
 RIJ(13*N)=DV(N)-GV(N)
 RIJ(14.N)=EV(N)-GV(N)
 RIJ(15,N)=FV(N)-GV(N)
 RIJ(16.N)=HV(N)-GV(N)
 AV (N)=BV(N)-AV(N)
 BV}(N)=CV(N)-BV(N
 DV(N)=FV(N)-DV(N)
1 EV (N)=FV(N)-FV(N)
```

```
 CALL CROSS(CV,AV&BV)
 CALL CROSS(FV,DV,EV)
 DO 14 J=1,16
 DO 14 N=1.2
 14 RDOTN(J,N)=0.
 DO 15 J=1,16
 DO 13 N=1.3
 RDOTN(J,1)=RDOTN(J,1)+RIJ(J.N)*CV(N)
13 RDOTN(J.2)=RDOTN(J,2)+RIJ(J,N)*FV(N)
 IF((RDOTN(J.1).GE.O.1).AND.(RDOTN(J.2).LE.-O.1)) GO TO 5
 15 CONTINUE
 SIJ=C.
 SDA=1.
 SDB=1.
 RETURN
 5 CALL DOT(SA.CV,CV)
 CALL DOT(SB.FV.FV)
 SA=SA**.5
 SB=SB**.5
 DO 2 N=1.3
 CV(N)=CV(N)/SA
 FV(N)=FV(N)/SB
 CALL AREA(A,DA,RA,NG,NG2)
 CALL AREA(B,DB,RR,NG.NGZ)
 DO 3 L=1,NG2
 DO 3 J=1,NG2
 DO 4 N=1.3
 X(N)=RA(L,N)
 XA(N)=X(N)
 Y(N)=RB(U.N)
 4 X(N)=X(N)-Y(N)
 CALL DOT(SI,CV,X)
 CALL DOT(S2,FV,X)
 IF((SI.GE.O.O).OR.(SZ.LE.O.C)) GO TO 3
 CALL BLOKK (XA,Y,NBLOCK,G,NA,NE,I)
 IF(G.LT..5) GO TO 3
 CALL DOT(S3.x.x)
 S3=53**2
 SIJ=-S1*S2/S3*DA(L)*DB(J)+SIJ
 CONTINUE
11 SDA =0.0
 SDB=0.0
 DO }7\textrm{N}=1.NG
 SDA=SDA+DA(N)
```

APPENDIX A - Continued

```
 7 SDB=SDB+DR(N)
 SIJ=SIJ/(SDA*Sna*3.1415926536)
 IF(((SIJ*SDA)\bulletLT*I\bulletE-5).AND.((SIJ*SDB)\bulletLT•1•E-S))SIJ=O*
 RETURN
 END
 SUBROUTINE AREA(A,DA,RA,NG,NG2)
 DIMENSION A(4.3),DA(100),RA(100.3),AV(3),BV(3),CV(3),OV(3)
 1,T1(3),T2(3),T3(3),T4(3),T5(3),T6(3),T7(3),T8(3)
 DIMENSION COEFFA(10.10.4), COEFFR(10,10.4)
 COMMON /THREE/ COEFFA.COEFFR
18 FORMAT(4E16.8)
 DO 2 N=1.3
 AV (N)=A(1,N)
 BV(N)=A (2,N)
 CV(N)=A(3,N)
 DV(N)=A (4,N)
 T1(N)=BV(N)-AV(N)
 T2(N)=CV(N)-BV(N)
 T3(N)=CV(N)-DV(N)
 2 T4 (N)=DV(N)-AV (N)
 CALL CROSS(T5,T4,T1)
 CALL CROSS(T6.T2,T1)
 CALL CROSS(T7.T4,T3)
 CALL CROSS(TB,T2,T3)
 CALL DOT (Z1,T5.T5)
 CALL DOT(Z2.TG.T6)
 CALL DOT (Z3.T7.T7)
 CALL DOT(Z4,T8,T8)
 Z1=Z1***5
 Z2=て2**.5
 Z3=Z3***5
 Z4=Z4***5
 K=1
 DO 1967 I=1.NG
 DO 1967 J=1,NG
 DA(K)=Z1*COEFFA(I|J.1)+Z2*COFFFA(I,J.2)+Z3*COEFFA(I N. 3)+Z4*COEFFA
 1(I.J.4)
 DO 3 M=1.3
 RA(K.M)=AV(M)*COEFFRR(I,J.1)+RV(M)*COEFFR(I,J.Z)+CV(M)*COEFFR(I,J.3
 1)+OV(M)*COEFFR(1,J.4)
1967 K=K+1
 RETURN
 END
 SUBROUTINE BLOKK(UV,VV,NBLOCK,G,NU,NV,I)
```

```
 DIMENSION UV(3),VV(3),B(75.5.3),C12(3),CI3(3),C15(3)
 DIMENSION NUMB2(75),AM(3),AMI1(3),AMI2(3),AMI3(3),RIMINA(3)
 COMMON/ONE/R
 COMMON/TWO/NUMBZ
 EPI=1.OE-OG
 IJ=1
 CALL SUB(AM,UV,VV)
 3 CONTINUE
 IF((NU.EQ.NUMBZ(I)).OR.(NV.EQ.NUMB2(I)))GO TO 100
 DO 7 L=1.3
 CI2(L)=B(1.2.L.)
 C15(L)=B(1.5.L)
 7C13(L)=B(1.3.L)
 CALL DOT(DET.AM,C15)
 IF(DET**2.LT.EP1) GO TO 100
 CALL CROSS(AMI1,AM,C12)
 CALL CROSS(AMI2.C13.AM)
 DO 8 M=1.3
 AMI1(M)=AMI1(M)/DET
 AMIZ(M)=AMI2(M)/DET
 AM13(M)=B(I.5.M)/DET
 8 RIMINA(M)=UV(M)-B(I,1,M)
 CALL DOT(V3.AMI3.RIMINA)
 IF((V 3.GE.1.O).OR.(V 3 -LE.O.)) GO TO 100
 CALL DOT(VI,AMII,RIMINA)
 IF(V 1 -LT.O.O) GO TO 100
 CALL DOT(VZ.AMIR.RIMINA)
 IF(V 2 -LT.O.O) GO TO 100
 IF(((V 2 -1.0)*(1.0+R(1.4.2))-V 1 *B(1.4.1)).GT.0.0) GO TO 100
 IF(((V 1 -1.0)*(1.0+5(1.4.1))-V 2 *B(1.4.2)).GT.0.0) GO TO 100
 G=0.0
 GO TO 60
100 CONTINUE
 IF(IJ.EQ.NBLOCK) GO TO 98
 IF(I.EQ.NBLOCK) GO TO 10
 I=I+1
 GO TO 11
 10 I=1
 11 IJ=IJ+1
 GO TO 3
98 G=1.0
60 CONTINUE
 RETURN
 END
```


## APPENDIX A - Continued

```
SUBROUTINE SUB(C,A,B)
DIMENSION C(3),A(3),B(3)
DO 1 J=1,3
C(J)=A(J)-B(J)
RETURN
END
SUBROUTINE CROSS(C,A,B)
OIMENSION C(3).A(3),B(3)
C(1)=A(2)*B(3)-R(2)*A(3)
C(2)=B(1)*A(3)-A(1)*B(3)
C(3)=A(1)*B(2)-R(1)*A(2)
RETURN
END
SUBROUTINE DOT (C,A,B)
DIMENSION A(3).R(3)
C=A(1)*B(1)+A(2)*B(2)+A(3)*B(3)
RETURN
END
```


## APPENDIX A - Continued

## Projected Area Program

```
 PROGRAM PROJAR(INPUT,OUTPUT, TAPES=INPUT,TAPES=OUTPUT,PUNCH)
 PROGRAM FOR PROJECTED AREAS OF PLANE QUADRILATERALS,ACCOUNTING FOR SHADING
 ARRAY DIMENGIONS WILL BE AS FOLLOWS-
MAIN PROGRAM- A (NPNL,4,3),G(NSHDR,5,3),NUMP (NPNL),NUMS(NSHDR),ETAS(NM).
 PHIS (NN), RETAS(NM), RPHIS (NN), ARPAN(NPNL), XMUAV(NPNL,NM), AND UNRMVEC(NPNL, 3).
SUBROUTINE PLANE=Z(NSHDR,5.3)
SUBROUTINE SHADE-E (NSHDR.5.3),NUMBZ (NSHDR)
 WHERE NPNL IS THE NUMBER OF PANELS,NSHDR IS THE NUMBER OF SHADERS.NM IS
THE NUMBER OF VALUES OF ETA-S.AND NN IS THE NUMBER OF VALUES OF PHI-S.
 IN THE PROJECTED AREA PROGRAM,NG IS THE NUMBER OF EQUAL SEGMENTS INTO
WHICH EACH SIDE OF FACH PANEL IS DIVIDED TO FORM A GRID OF ELEMENTAL AREAS.
IF NG IS DIFFERENT FROM 10.THE DIMENSIONS MUST BE DA (NG**2),RG(NG**2.3).
COEFFA(NG,NG.4).COEFFR(NG,NG.4) IN THE PROGRAM-AND IN THE SUBROUTINE AREA,
DA(NG**2),RA(NG**2,3),COFFFA(NG*NG&4),AND COEFFR(NG,NG&4).
 DEFINITIONS OF VARIABLES-
 COEFFA (M,N,K) IS ONE OF THE FOUR COEFFICIENTS IN THE FORMULA FOR THE AREA
 OF GRID ELFMENT M.N OF A PANEL
 COEFFR(M,N,K) IS THE COEFFICIENT OF THE COORDINATES OF THE KTH CORNER OF THE
 PANEL IN THE FORMULA FOR THE CENTROID OF ELEMENT M.N
 NUMP IS AN ARRAY OF NUMBERS IDENTIFYING THE PLANE OF EACH PANEL
C NUMS IS A SIMILAR ARRAY FOR THE SHADERS
C A(I,J,KIGIVES THE CARTESIAN COORDINATES OF CORNER J{J=1 TO 4) OF PANEL I
C K=I TO 3 CORRESPONDS TO X,Y,AND Z COORDINATES RESPECTIVELY.
C B GIVES THE SHADER COORDINATES.
C ETAS IS THE ARRAY OF FTA-S VALUES,PHIS OF THE PHI-S VALUFS.
 DIMENSION A (50.4.3), (160.5.3),NUMP(50),NUMS(60),ETAS(37)
 1,PHIS(72),C(4,3),C1(3),C2(3),C3(3),C4(3),VNORM(3),V2(3),SUN(3).
 2RETAS(37),RPHIS(72),DA(100),RG(100.3),RSUN(3),RGR(3)
 DIMENSION COEFFA(10.10.4),COEFFR(10.10.4)
 DIMENSION: ARPAN(50).XMUAV(19).UNRMVEC(50.3)
 DIMENSION VEE1(3):VEF2(3)
 DIMFNSION XMUPHI(72)
 DIMENSION AXIS1(50,3)\cdotAXIS2(50,3)
 DIMENSION CSET(37).SNET(37).SNPH(72),CSPH(72)
 COMMON /ONE/B /TWO/NUMS
 COMMON /THREF/ COEFFA.COEFFR
 FORMAT(711O)
 FORMAT(12F6.1)
 READ(5.30) NPNL,NSHDR,ISPIN
 READ(5.30) NG
 READ(5,30) (NUMP(1), t = 1 NPNL)
 READ(5,30) (NUMS(1), I=1,NSHDR)
 READ(5,31) (((A(I,J,K),K=1,3),J=1,4),I=1.NPNL)
 READ(5,31) (< (B(I,J.K),K=1,3),J=1,4), I=1,NSHDR)
```


## APPENDIX A - Continued

```
 WRITE (6,32)
32 FORMAT(1H 1OHNO. PANELSIIHNO. SHADERS)
 WRITE(6.30) NPNL. NSHDR
 WRITE(6.34)
34 FORMAT(1HO12HSIZE OF GRID)
 WRITE(6.30) NG
 WRITE(6.35)
35 FORMAT(1HO1GHPANEL PLANE NOS.)
 WRITE(6,30) (NUMP(1), I=1,NPNL)
 WRITE(6.36)
36 FORMAT (1HO17HSHADER PLANE NOS.)
 WRITE(6,30) (NUMS(I),I=1,NSHDR)
 WRITE(6.37)
37 FORMAT(IHOITHPANEL COORDINATES\
97 FORMAT(12F7.1)
 WRITE(6,97) (((A)(I,J,K),K=1,3),J=1,4),I=1,NPNL)
 WRITE(6.38)
38 FORMAT(1HO18HSHADER COORDINATES)
 WRITE(6.97) (`(R(1,J.K),K=1,3),J=1,4),1=1,NSHDR)
 NG2=NG*NG
 FOURN2=FLOAT (4*NG2)
 TWON4=FLOAT(2*NG2*NG2)
 DO 75 M=1,NG
 1 1 =M-1
 121=11+M
 NI=NG-M
 N11=2*NI+1
 DO 75 N=1,NG
 J1=N-1
 J21=J1+N
 NJ=NG-N
 NJ1=2*NJ+1
 COEFFA(M,N,1)=FLOAT(NI*NJ+(NI+1)*(NJ+1))/TWONA
 COEFFA(M,N,2)=FLOAT(II*(NJ+1)+M*NJ)/TWON4
 COEFFA(M,N,3)=FLOAT ((NI+1)*JI+NI*N)/TWON4
 COEFFA(M,N,4)=FLOAT (II*JI+M*N)/TWON4
 COEFFR(M,N:1)=FLOAT(NII*NJI)/FOURN2
 COEFFR(M,N,2}=FLOAT(121*NJ1)/FOURN2
 COEFFR(M,N,3)=FLOAT(121*J21)/FOURN2
75 COEFFR(M.N.4)=FLOAT(NII*J21)/FOURN2
 CALL PLANE (NSHDR)
51 READ(5.30) NM,NN
 IF (EOF.5)998.999
998 STOP
```

```
999 CONTINUE
 READ(5.31) (ETAS(I),I=1,NM)
 READ(5.31) (PHIS(I),I=1,NN)
 WRITE(6,33)
 33 FORMAT(1HO12HNO. OF ETA-S12HNO. OF PHI-S)
 WRITE(6.20) NM.NN
 WRITE(6.39)
 39 FORMAT(1HO14HETA-SUN VALUES)
 WRITE(6.31) (ETAS(1),I=1,NM)
 WRITE(6.40)
 40 FORMAT(1HO14HPHI-SUN VALUES)
 WRITE(G.E1) (PHIS(I),I=1,NN)
 TOT=FLOAT (NN)
 I SHDR=1
 DO 150 LM=1,NM
 RETAS(LM)=ETAS(LM)*1.745329252E-2
 CSET(LM)=COS(RETAS(LM))
150 SNET(LM)=SIN(RETAS(LM))
 DO 175 MNN=1.NN
 RPHIS(MN)=PHIS(MN)*1.745329252E-2
 SNPH(MN)=SIN(RPHIS(MN))
175 CSPH(MN)=COS(RPHIS(MN))
 DO 1 IP=1,NPNL
 NI=NUMP(IP)
 DO 2 JA = 1,3
 DO B JC=1.4
 8C(JC,JA)=A(IP,JC,JA)
 C1(JA)=C(2.JA)-C(1,JA)
 C2(JA)=C(A,JA)-C(1,JA)
 C3(JA)=C(4,JA)-C(3,JA)
 2 CA(JA)=C(P,JA)-C(3,JA)
 CALL CROSS(VNORM.C1.C2)
 CALL CROSS(V2.C3.C4)
 CALL DOT(D,VNORM.VNORM)
 CALL DOT(D1.V2*V2)
 D=D**.5
 DO 68 JQ=1.3
68 UNRMVEC(IP,JQ)=VNORM(JQ)/D
 D1=D1***5
 ARMAC= -5* (D+D1)
 ARPAN(IP)=ARMAC
 CALL AREA(C,DA.RG.NG.NG2)
 ARTOT=0.
 DO 13 J=1.NG2
```


## APPENDIX A - Continued

```
 13 ARTOT=ARTOT+DA(J)
 WRITE(6.16) IP
 16 FORMAT(1H111H PANEL NO&=12)
 WRITE(6.15) ARMAC
15 FORMAT(1HO20X.5HAREA=E16.8.2X.7HSQ. IN.)
 IF((ABS(ARTOT/ARMAC-1.)).GE..O1) WRITE(6.14)
14 FORMAT (1HO37HAREAS DO NOT AGREE WITHIN ONE PERCENT)
 WRITE(6.25) ARTOT
 25 FORMAT(IH 23HSUM OF ELEMENTAL AREAS=E16.8.2X.7HSQ. IN*)
 OO 3 KN=1,3
 3 VNORM (KN)=VNORM (KN)/D
 DO 4 LM=1.NM
 SUM=O.
 WRITE(6.17)
 17 FORMAT(1HO3\times4HETAS4X4HPHIS3X6HARPROJ10X2HMU)
 DO 5 MN=1,NN
 ARPROJ=O.
 IF(ISPIN.EQ.1) GO TO 27
 GO TO 21
27 SUN(1)=SNET(LM)*CSPH(MN)
 SUN(2)=SNET (LM)*SNDH (MN)
 SUN (3)=CSET (LM)
 CALL DOT (SDOTN,VNORM,SUN)
 IF(SDOTN.LE.O.) GO TO 23
 GO TO 47
 21 CONTINUE
 DO 29 K=1.3
 29 VEEI(K)=C1(K)
 SDOTN=CSET(LMM)
 CALL DOT(VV1 VEE1 VEF1)
 VV1=VV1***5
 DO 24 K=1,3
 24 VEEI(K)=VEE1 (K)/VVI
 CALL CROSS(VFEC,VNORM,VEE1)
 DO 26 K=1.3
 AXISI(IP,K)=VEE1(K)
 AXIS2(IP,K)=VEE2(K)
26 SUN(K)=VNORM(K)*CSET(LM)+VEEI (K)*SNET(LMM)*CSPH(MN)+VEEZ (K)*SNET (LM
 1)*SNPH (MN:)
47 DO 7 N=1.3
 7 SUN(N)=1000.*SUN(N)
 DO 9 J=1.NG2
 DO 10 K=1.3
 RGUN(<)=RG(J.K)+SUN(K)
```

```
 10 RGR(K)=RG(J.K)
 CALL SHADE(RGR,RSUN,NSHDR,H.NI ISHDR)
 IF(H.LT..5) GO TO 9
 ARPROJ=ARPROJ+DA(J)
 9 ~ C O N T ~ I N U E ~
 ARPROJ=ARPROJ*SDOTN
23 XMU=ARPROJ/ARTOT
 WRITE(6.18) ETAS(LM),OHIS(MN),ARPROJ&XMU
 XMUPHI (MN) = XMU
 18 FORMAT(2F8.1.2E16.8)
 IF(ISPIN) 5.5.100
100 SUM=SUM+ARPROJ
 5 CONTINUE
 IF(ISPIN) 77.77.78
77 PUNCH 8&, (XMUPHI (LP),LP=1,NN)
 GO TO 4
78 ARPJBR=SUM/TOT
 XMUBAR = ARPJBR/ARTOT
 XMUAV(LM) = XMU日AR
 WRITE(G.19)
19 FORMAT (1HO15HMFAN PROJ. AREA. 7X.IOHAVFRAGE MU)
 WRITE(6.20) ARPJBR,XMUBAR
20 FORMAT (2E16.8)
 4 CONTINUE
 IF(ISPIN.EQ.O) GO TO I
 PUNCH 88. (XMUAV (LM).LM=1.NM)
 1 CONTINIJE
88 FORMAT(TFII.8)
4 9 ~ F O R M A T (5 E 1 6 . 9) ,
 PUNCH 49.(ARPAN(IP),IP=1.NPNL)
50 FORMAT(GF13.9)
 IF(ISPIN) 72.72.73
72 PUNCH 50, ((UNRMVEC(IP,JQ),JQ=1,3),1P=1,NPNL)
 PUNCH 50.((AXISI(IP,K),K=1,3).IP=1,NPNL)
 PUNCH 50.((AXICP(IP,K),K=1,3),IP=1,NPNL)
73 PUNCH 30. NM.NN
 PUNCH 31.(ETAS(M), M=1.NM)
 PUNCH 31, (PHIS(N),N=1,NN)
 GO TO 51
 END
 SUBROUTINE PLANE (NBLOCK)
 DIMENSION Z(60.5,3),C1(3),C2(3),C3(3),C4(3),C5(3),AM1(3),AM2(3).
 1V(3)
 COMMON/ONE/Z
```


## APPENDIX A - Continued

            C4(3)=0.
            DO 6 J=1,3
            Z(1.2.J)=C2(J)
            Z(1.3.J)=C3(J)
            Z(1,4,J)=C4(J)
                            Z(I,5.J)=C5(J)
        I=I +1
        IF(I.LT*(NBLOCK+1)) GO TO 5
        RETURN
        END
    C
C
SUBR. PLANE OPFRATES ON ARRAY Z (BODY COORDINATES OF THE }4\mathrm{ CORNERS OF EACH
SHADERI TO FINN PARAMETERS NEEDED BY THE SHADING SURR.(SHADE)
SUBROUTINE AREA(A,DA, २A,NG,NGZ)
DIMENSION A(4.3),DA(100),RA(100.3),AV(3), BV(3),CV(3),DV(3)
1,T1(3),T2(3),T3(3),T4(3),T5(3),T6(3),T7(3),T8(3)
DIMENSION COEFFA(10.10.4),COEFFR(10.10.4)
COMMON /THRES/ COEFFA,COEFFRR
18 FORMAT (4E16.8)
DO 2 N=1.3
AV (N)=A(I.N)
BV(N)=A(2,N)
CV(N)=A(3,N)
DV(N)=A(4,N)
T1(N)=BV(N)-AV(N)
T2(N)=CV(N)-BV(N)
T3(N)=CV(N)-DV(N)
2 T4(N)=DV(N)-AV (N)
CALL CROSS(T5.T4,T1)
CALL CROSS(T6.T?.T1)

```

\section*{APPENDIX A－Continued}
```

        CALL CROSS(T7,T4,T3)
        CALL CROSS(T8.T2.T3)
        CALL DOT(Z1.TS.T5)
        CALL DOT(Z2.T6.T6)
        CALL DOT(Z3,T7,T7)
        CALL DOT(Z4,T8.T8)
        Z1=Z1***S
        Zこ=てご***5
        Z3=マ3***5
        Z4=マ4**.5
        K=1
        DO 1967 I=1 NG
        DO 1967 J=1.NG
        DA(K)=Z1*COEFFA(I.J.1)+Z2*COEFFA(I,J.2)+Z3*COEFFA(1, J.3)+Z4*COEFFA
        1(I,J.4)
        DO 3 M=1,3
    3 RA(K,M)=AV(M)*COEFFR(I,J,1)+BV(M)*COEFFR(1,J,2)+CV(M)*COEFFR(I, \, 3
        1)+DV(M)*COEFFRR(1,J.4)
    1967 K=K+1
        RETURN
        END
    C SUBR. AREA,USING THE COORDINATES OF EACH CORNER AND THE ARRAYS COEFFA AND
C COEFFR,COMPUTES THE COORDINATES OF THE CENTROID AND THE AREA OF EACH GRID
C ELEMENT OF A PANEL.
SUBROUTINE SHADE(UV,VV,NBLOCK.G.NU.I)
DIMENSION UV(3),VV(3),B(60,5,3),C12(3),CI3(3),CI5(3)
DIMENSION NUME2(60),AM(3),AMI1(3),AMI2(3),AMI3(3),AMINX(3)
COMMON/ONE/B
COMMON/TWO/NUMBZ
EPI=1.OE-OG
IJ=1
CALL SUB(AM,VV.UV)
3 CONT INUE
IF (NU.EQ.NUME2(I))GO TO 100
DO. }7\textrm{L}=1.
C12(L)=B(1,2.L)
CI5(L)=B(1,5,L)
7C13(L)=B(1.3.L)
CALL DOT(DET.AM,CI5)
IF(DET**2.LT.EP1) GO TO 100
CALL CROS5(AMI1,AM,CI3)
CALL CROSS(AMI2,CI2,AM)
DO \& M=1.3
AMI1(M)=AMII(M)/DET

```

\section*{APPENDIX A - Concluded}
```

        AMI2(M)=AMI2(M)/DET
        AMI 3(M)=B(I,5,M)/DET
    B AMINX(M)=B(I|I,M)-UV(M)
        CALL DOT(V3.AMI3.AMINX)
        IF((V 3.GE.1.O).OR.(V 3 -LE.O.)) GO TO 100
        CALL DOT (VI.AMII.AMINX)
        IF(V I L.T.O.O) GO TO 100
        CALL DOT(VZ,AMI2,AMINX)
        IF(V 2 LT.O.O) GO TO 100
        IF(((VI-1.)*(1.+B(I*4.2))-V2*B(I.4.1))*GT.0.) GO TO 100
        IF(((V2-I*)*(1*+B(I*4,1))-VI*F(I.4.2))*GT*O.) GO TO 100
        G}=0.
        GO TO 60
    100 CONTINUE
        IF(IJ.EQ.NBLOCK) GO TO 98
        IF(I.EQ.NBLOCK) GO TO 10
        I=I+1
        GO TO 11
    10 I = 1
    11 IJ=1 J+1
        GO TO 3
        G=1.0
        CONTINUE
        RETURN
        END
    C
SUBR, SHADE DETERMINES WHETHER THE LINE BETWEEN TWO GIVEN POINTS INTERSECTS
ANY OF THE SHADERS.
SUBROUTINE SUB(C,A,B)
DIMENSION A(3),R(3):C(3)
DO 1 I=1.3
1C(1)=A(1)-B(1)
RETURN
END
C SUBR. SUB GIVFS VFCTOR C=B-A
SUFROUTINE CROSS(C,A,B)
DIMENSION A(3),B(3),C(3)
C(1)=A(2)*B(3)-A(3)*B(2)
C(2)=A(3)*B(1)-A(1)*B(3)
C(3)=A(1)*B(2)-A(2)*B(1)
RETURN
END
C SUBR. CROSS GIVES VECTOR C=CROSS PRODUCT OF VECTORS A AND B
SUBROUTINE DOT (C,A,B)
DIMENSION A(3),P(3)
C=A(1)*B(1)+A(2)*B(2)+A(3)*B(3)
RFTURN
END
C SUBR. DOT GIVES C=DOT PRODUCT OF VECTORS A AND B.

```

\section*{APPENDIX B}

\title{
DERIVATION OF CENTROID AND AREA FORMULAS \\ FOR ELEMENTAL GRID SECTIONS OF A \\ PLANE QUADRILATERAL
}

The plane quadrilateral is divided into an \(\mathrm{n} \times \mathrm{n}\) grid by dividing each side into n equal segments and connecting the corresponding dividing points on opposite sides. (See fig. 6.) Counterclockwise from the lower left, the position vectors of the vertexes are \(\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}\), and \(\overline{\mathrm{D}}\). Any vertex may be taken as the starting point, so long as the order is counterclockwise. This gives the proper sense to the computed normal vector to the plane.

The lower left corner of each elemental area is denoted by (\(\mathbf{j}, \mathrm{k}\)), where \(\mathbf{j}\) and \(\mathbf{k}\) are integers increasing from 1 to \(n\); \(j\), from left to right; and \(k\), from bottom to top. Now, each segment of the line between \(\overline{\mathrm{A}}\) and \(\overline{\mathrm{B}}\) represents a change in position of \(\frac{\bar{B}-\bar{A}}{n}\). Thus, the position vector of the point (\(j, 1\)) is given by
\[
\begin{equation*}
\bar{V}_{j, 1}=\bar{A}+(j-1) \frac{\bar{B}-\bar{A}}{n}=\frac{1}{n}[(n-j+1) \bar{A}+(j-1) \bar{B}] \tag{B1}
\end{equation*}
\]

Similarly, along the line from \(\overline{\mathrm{D}}\) to \(\overline{\mathrm{C}}\) (where \(\mathrm{k}=\mathrm{n}+1\)),
\[
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{n}+1}=\frac{1}{\mathrm{n}}[(\mathrm{n}-\mathrm{j}+1) \overline{\mathrm{D}}+(\mathrm{j}-1) \overline{\mathrm{C}}] \tag{B2}
\end{equation*}
\]

The position vectors of the points \((1, k)\) and (\(\mathrm{n}+1, \mathrm{k}\)) correspondingly will be given by
\[
\begin{gather*}
\overline{\mathrm{V}}_{1, \mathrm{k}}=\frac{1}{\mathrm{n}}[(\mathrm{n}-\mathrm{k}+1) \overline{\mathrm{A}}+(\mathrm{k}-1) \overline{\mathrm{D}}] \tag{B3}\\
\overline{\mathrm{V}}_{\mathrm{n}+1, \mathrm{k}}=\frac{1}{\mathrm{n}}[(\mathrm{n}-\mathrm{k}+1) \overline{\mathrm{B}}+(\mathrm{k}-1) \overline{\mathrm{C}}] \tag{B4}
\end{gather*}
\]

If a line is drawn between \(\overline{\mathrm{V}}_{\mathrm{j}, 1}\) and \(\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{n}+1}\) and another is drawn between \(\overline{\mathrm{V}}_{1, \mathrm{k}}\) and \(\overline{\mathrm{V}}_{\mathrm{n}+1, k}\), their intersection will be \(\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}}\), the position vector of the lower left corner of element \(j k\). The line between \(\overline{\mathrm{V}}_{\mathrm{j}, 1}\) and \(\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{n}+1}\) is divided by the intersection point in the same ratio as sides \(B C\) and \(A D\) are divided. Thus, in terms of \(\bar{V}_{j, 1}\) and \(\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{n}+1}, \quad \overline{\mathrm{~V}}_{\mathrm{j}, \mathrm{k}}\) may be expressed as
\[
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}}=\frac{1}{\mathrm{n}}\left[(\mathrm{n}-\mathrm{k}+1) \overline{\mathrm{V}}_{\mathrm{j}, 1}+(\mathrm{k}-1) \overline{\mathrm{V}}_{\mathrm{j}, \mathrm{n}+1}\right] \tag{B5}
\end{equation*}
\]

Substituting equations (B1) and (B2) into equation (B5) yields
\[
\begin{align*}
\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}}= & \frac{1}{n^{2}}[(n-j+1)(n-k+1) \overline{\mathrm{A}}+(j-1)(n-k+1) \overline{\mathrm{B}} \\
& +(j-1)(k-1) \overline{\mathrm{C}}+(\overline{\mathrm{n}}-j+1)(k-1) \overline{\mathrm{D}}] \tag{B6}
\end{align*}
\]

This is the exact value of the position vector of the lower left corner of elemental area jk of the quadrilateral. The position vector of the centroid of the elemental quadrilateral may, except for extremely irregular shapes, be well approximated by
\[
\begin{align*}
\left(\overline{\mathrm{V}}_{\mathrm{c}}\right)_{\mathrm{j}, \mathrm{k}} \approx & \overline{\mathrm{~V}}_{\mathrm{j}+\frac{1}{2}, \mathrm{k}+\frac{1}{2}}=\frac{1}{\mathrm{n}^{2}}\left[\left(\mathrm{n}-\mathrm{j}+\frac{1}{2}\right)\left(\mathrm{n}-\mathrm{k}+\frac{1}{2}\right) \overline{\mathrm{A}}+\left(\mathrm{j}-\frac{1}{2}\right)\left(\mathrm{n}-\mathrm{k}+\frac{1}{2}\right) \overline{\mathrm{B}}\right. \\
& \left.+\left(\mathrm{j}-\frac{1}{2}\right)\left(\mathrm{k}-\frac{1}{2}\right) \overline{\mathrm{C}}+\left(\mathrm{n}-\mathrm{j}+\frac{1}{2}\right)\left(\mathrm{k}-\frac{1}{2}\right) \overline{\mathrm{D}}\right] \tag{B7}
\end{align*}
\]

This is the mean of the position vectors of the four corners of the grid element and would also be the point of intersection if the grid were twice as fine.

The area of the element jk is found by dividing it into two triangles and taking half the magnitude of the cross product of two sides of each triangle. Since the upper right triangle of element \(j k\) is congruent to the lower left triangle of element \(j+1, k+1\), the area of element jk is given by
\[
\begin{align*}
(\Delta \mathrm{A})_{j, k}= & \frac{1}{2}\left|\left(\overline{\mathrm{~V}}_{\mathrm{j}+1, \mathrm{k}}-\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}}\right) \times\left(\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}+1}-\overline{\mathrm{V}}_{\mathrm{j}, \mathrm{k}}\right)\right| \\
& +\frac{1}{2}\left|\left(\overline{\mathrm{~V}}_{\mathrm{j}+2, \mathrm{k}+1}-\overline{\mathrm{V}}_{\mathrm{j}+1, \mathrm{k}+1}\right) \times\left(\overline{\mathrm{V}}_{\mathrm{j}+1, \mathrm{k}+2}-\overline{\mathrm{V}}_{\mathrm{j}+1, \mathrm{k}+1}\right)\right| \tag{B8}
\end{align*}
\]

Substituting equation (B6) into equation (B8) yields
\[
\begin{align*}
(\Delta \mathrm{A})_{j, k}= & \left.\frac{1}{2 n^{4}} \right\rvert\,[(\mathrm{n}-\mathrm{k}+1)(\overline{\mathrm{B}}-\overline{\mathrm{A}})+(\mathrm{k}-1)(\overline{\mathrm{C}}-\overline{\mathrm{D}})] \times[(\mathrm{n}-\mathrm{j}+1)(\overline{\mathrm{D}}-\overline{\mathrm{A}})+(\mathrm{j}-1)(\overline{\mathrm{C}}-\overline{\mathrm{B}})] \\
& +[(\mathrm{n}-\mathrm{k})(\overline{\mathrm{B}}-\overline{\mathrm{A}})+\mathrm{k}(\overline{\mathrm{C}}-\overline{\mathrm{D}})] \times[(\mathrm{n}-\mathrm{j})(\overline{\mathrm{D}}-\overline{\mathrm{A}})+j(\overline{\mathrm{C}}-\overline{\mathrm{B}})] \mid \tag{B9}
\end{align*}
\]

Expanding equation (B9) gives
\[
\begin{align*}
(\Delta A)_{j, k}= & \frac{1}{2 n^{4}}\{[(n-j+1)(n-k+1)+(n-j)(n-k)]|(\bar{B}-\bar{A}) \times(\bar{D}-\overline{\mathrm{A}})| \\
& +[(j-1)(n-k+1)+j(n-k)]|(\bar{B}-\bar{A}) \times(\bar{C}-\bar{B})| \\
& +[(n-j+1)(k-1)+(n-j) k]|(\bar{C}-\bar{D}) \times(\bar{D}-\overline{\mathrm{A}})| \\
& +[(j-1)(k-1)+j k]|(\bar{C}-\bar{D}) \times(\bar{C}-\bar{B})|\} \tag{B10}
\end{align*}
\]

\section*{APPENDIX C}

\section*{DETERMINATION OF SHADING}

Five tests are made in the computer program to determine whether points \(\mathbf{X}\) and \(Y\) are shaded from one another by the planar quadrilateral \(A B C D\) :

The first test determines whether the point of intersection \(P\) of the plane of \(A B C D\) by the line \(X Y\) falls between points \(X\) and \(Y\). Then for each of the four sides of \(A B C D\), it is found whether \(P\) lies toward the inside or the outside of \(A B C D\) from that side.

The position vector of a point on the plane of the quadrilateral \(A B C D\) may be expressed as a linear combination of two vectors in the plane added to the position vector of a corner, say corner A:
\[
\overline{\mathrm{r}}_{\text {plane }}=\overline{\mathrm{A}}+\alpha^{\prime}(\overline{\mathrm{B}}-\overline{\mathrm{A}})+\beta^{\prime}(\overline{\mathrm{D}}-\overline{\mathrm{A}})
\]

If \(\overline{\mathrm{P}}\) is the position vector of the point of intersection of the plane by the line connecting \(X\) and \(Y\), then
\[
\overline{\mathbf{P}}-\overline{\mathbf{X}}=\gamma(\overline{\mathrm{Y}}-\overline{\mathrm{X}})
\]

Setting \(\overline{\mathrm{P}}=\overline{\mathbf{r}}_{\text {plane }}\) gives
\[
\alpha^{\prime}(\overline{\mathrm{A}}-\overline{\mathrm{B}})+\beta^{\prime}(\overline{\mathrm{A}}-\overline{\mathrm{D}})+\gamma(\overline{\mathrm{Y}}-\overline{\mathrm{X}})=(\overline{\mathrm{A}}-\overline{\mathrm{X}})
\]
or
\[
\alpha^{\prime} \overline{\mathrm{V}}_{1}+\beta^{\prime} \overline{\mathrm{V}}_{2}+\gamma \overline{\mathrm{V}}_{3}=\overline{\mathrm{V}}_{4}
\]

This vector equation is, of course, three simultaneous linear equations in \(\alpha^{\prime}, \beta^{\prime}\), and \(\gamma\) - one for each vector component.

\section*{APPENDIX C - Continued}

The solution for \(\gamma\) will be carried out first, since the quadrilateral ABCD will be immediately eliminated as a shader if the condition \(0<\gamma<1\) is not met:
\[
\gamma=\frac{\left|\begin{array}{lll}
\left(\mathrm{V}_{1}\right)_{\mathrm{X}} & \left(\mathrm{~V}_{2}\right)_{\mathrm{X}} & \left(\mathrm{~V}_{4}\right)_{\mathrm{X}} \\
\left(\mathrm{~V}_{1}\right)_{\mathrm{Y}} & \left(\mathrm{~V}_{2}\right)_{\mathrm{Y}} & \left(\mathrm{~V}_{4}\right)_{\mathrm{Y}} \\
\left(\mathrm{~V}_{1}\right)_{\mathrm{Z}} & \left(\mathrm{~V}_{2}\right)_{\mathrm{Z}} & \left(\mathrm{~V}_{4}\right)_{\mathrm{Z}}
\end{array}\right|}{\left|\begin{array}{lll}
\left(\mathrm{V}_{1}\right)_{\mathrm{X}} & \left(\mathrm{~V}_{2}\right)_{\mathrm{X}} & \left(\mathrm{~V}_{3}\right)_{\mathrm{X}} \\
\left(\mathrm{~V}_{1}\right)_{\mathrm{Y}} & \left(\mathrm{~V}_{2}\right)_{\mathrm{Y}} & \left(\mathrm{~V}_{3}\right)_{\mathrm{Y}} \\
\left(\mathrm{~V}_{1}\right)_{\mathrm{Z}} & \left(\mathrm{~V}_{2}\right)_{\mathrm{Z}} & \left(\mathrm{~V}_{3}\right)_{\mathrm{Z}}
\end{array}\right|}=\frac{\overline{\mathrm{V}}_{1} \cdot\left(\overline{\mathrm{~V}}_{2} \times \overline{\mathrm{V}}_{4}\right)}{\overline{\mathrm{V}}_{1} \cdot\left(\overline{\mathrm{~V}}_{2} \times \overline{\mathrm{V}}_{3}\right)}
\]

If \(\alpha^{\prime}<0\), the point lies to the left of side AD and if \(\beta^{\prime}<0\), the point lies below side AB . These will also be evaluated one at a time:
\[
\alpha^{\prime}=\frac{\overline{\mathrm{V}}_{4} \cdot\left(\overline{\mathrm{~V}}_{2} \times \overline{\mathrm{V}}_{3}\right)}{\overline{\mathrm{V}}_{1} \cdot\left(\overline{\mathrm{~V}}_{2} \times \overline{\mathrm{V}}_{3}\right)}
\]
\[
\beta^{\prime}=\frac{\overline{\mathrm{V}}_{1} \cdot\left(\overline{\mathrm{~V}}_{4} \times \overline{\mathrm{V}}_{3}\right)}{\overline{\mathrm{V}}_{1} \cdot\left(\overline{\mathrm{~V}}_{2} \times \overline{\mathrm{V}}_{3}\right)}
\]

If \(\alpha^{\prime}\) and \(\beta^{\prime}\) are both greater than zero, more testing is required.
The reason for the primes is that \(\alpha^{\prime}\) and \(\beta^{\prime}\) are actually quadratics in the two linear parameters for the skewed coordinate frame formed by the quadrilateral. Let \(\alpha\) be a linear parameter characterizing a point moving from \(A\) to \(B\) or \(D\) to \(C\) as \(\alpha\) varies from 0 to 1 . Let \(\beta\) be the parameter for points along AD or BC as shown in the following sketch:

Then,
\[
\begin{aligned}
\overline{\mathbf{P}} & =\overline{\mathbf{A}}+\alpha(\overline{\mathrm{B}}-\overline{\mathrm{A}})+\beta\{[\overline{\mathrm{D}}+\alpha(\overline{\mathbf{C}}-\overline{\mathrm{D}})]-[\overline{\mathrm{A}}+\alpha(\overline{\mathrm{B}}-\overline{\mathrm{A}})]\} \\
& =\overline{\mathbf{A}}+\alpha(\overline{\mathrm{B}}-\overline{\mathrm{A}})+\beta(\overline{\mathbf{D}}-\overline{\mathrm{A}})+\alpha \beta(\overline{\mathrm{A}}-\overline{\mathrm{B}}+\overline{\mathrm{C}}-\overline{\mathrm{D}})
\end{aligned}
\]

The vector (\(\overline{\mathrm{A}}-\overline{\mathrm{B}}+\overline{\mathrm{C}}-\overline{\mathrm{D}}\)) lies in the plane of the quadrilateral and thus can be given as a linear combination of \((\bar{B}-\bar{A})\) and \((\bar{D}-\bar{A}): \quad(\bar{A}-\bar{B}+\bar{C}-\bar{D})=\lambda_{1}(\bar{B}-\bar{A})+\lambda_{2}(\bar{D}-\bar{A})\). The parameters \(\lambda_{1}\) and \(\lambda_{2}\) may be found by use of the vectors reciprocal to (\(\bar{B}-\bar{A}\)) and (\(\bar{D}-\bar{A}\)), denoted by superscript \(R\) and characterized by
\[
\begin{aligned}
& (\overline{\mathrm{B}}-\overline{\mathrm{A}})^{R} \cdot(\overline{\mathrm{~B}}-\overline{\mathrm{A}})=1 \\
& (\overline{\mathrm{~B}}-\overline{\mathrm{A}})^{\mathrm{R}} \cdot(\overline{\mathrm{D}}-\overline{\mathrm{A}})=0 \\
& (\overline{\mathrm{D}}-\overline{\mathrm{A}})^{R} \cdot(\overline{\mathrm{~B}}-\overline{\mathrm{A}})=0 \\
& (\overline{\mathrm{D}}-\overline{\mathrm{A}})^{R} \cdot(\overline{\mathrm{D}}-\overline{\mathrm{A}})=1
\end{aligned}
\]
where, if \(\bar{N}=(\bar{B}-\bar{A}) \times(\bar{D}-\bar{A})\), then
\[
\begin{aligned}
& (\overline{\mathrm{B}}-\overline{\mathrm{A}})^{R}=\frac{(\overline{\mathrm{D}}-\overline{\mathrm{A}}) \times \overline{\mathrm{N}}}{[(\overline{\mathrm{D}}-\overline{\mathrm{A}}) \times \overline{\mathrm{N}}] \cdot(\overline{\mathrm{B}}-\overline{\mathrm{A}})} \\
& (\overline{\mathrm{D}}-\overline{\mathrm{A}})^{R}=\frac{\overline{\mathrm{N}} \times(\overline{\mathrm{B}}-\overline{\mathrm{A}})}{[\overline{\mathrm{N}} \times(\overline{\mathrm{B}}-\overline{\mathrm{A}})] \cdot(\overline{\mathrm{D}}-\overline{\mathrm{A}})}
\end{aligned}
\]

Now,
\[
(\overline{\mathrm{B}}-\overline{\mathrm{A}})^{\mathrm{R}} \cdot(\overline{\mathrm{~A}}-\overline{\mathrm{B}}+\overline{\mathrm{C}}-\overline{\mathrm{D}})=\lambda_{1}
\]
and
\[
(\overline{\mathrm{D}}-\overline{\mathrm{A}})^{\mathrm{R}} \cdot(\overline{\mathrm{~A}}-\overline{\mathrm{B}}+\overline{\mathrm{C}}-\overline{\mathrm{D}})=\lambda_{2}
\]

Thus,
\[
\overline{\mathrm{P}}=\overline{\mathrm{A}}+\alpha(\overline{\mathrm{B}}-\overline{\mathrm{A}})+\beta(\overline{\mathrm{D}}-\overline{\mathrm{A}})+\alpha \beta\left[\lambda_{1}(\overline{\mathrm{~B}}-\overline{\mathrm{A}})+\lambda_{2}(\overline{\mathrm{D}}-\overline{\mathrm{A}})\right]
\]

\section*{APPENDIX C - Continued}
or
\[
\overline{\mathbf{P}}=\overline{\mathrm{A}}+\alpha\left(1+\lambda_{1} \beta\right)(\overline{\mathrm{B}}-\overline{\mathrm{A}})+\beta\left(1+\lambda_{2} \alpha\right)(\overline{\mathrm{D}}-\overline{\mathrm{A}})
\]
and
\[
\begin{aligned}
& \alpha^{\prime}=\left(1+\lambda_{1} \beta\right)^{\alpha} \\
& \beta^{\prime}=\left(1+\lambda_{2} \alpha\right) \beta
\end{aligned}
\]
from which the values of \(\alpha\) and \(\beta\) can be found directly.
An advantageous alternative to finding \(\alpha\) and \(\beta\) is found by plotting the quadrilateral ABCD in \(\alpha^{\prime}, \beta^{\prime}\) coordinates:

The \(\alpha^{\prime}\) and \(\beta^{\prime}\) coordinates of the corners are found from the two equations for \(\alpha^{\prime}\) and \(\beta^{\prime}\) in terms of \(\alpha\) and \(\beta\), with \(\alpha\) and \(\beta\) having a value of 0 or 1 at the corners.

The points \(P\) and \(Q\) represent possible points of intersection between the plane of ABCD and a line connecting two points of interest. If point \(P\) lies on the righthand side of line \(B C\), then the single nonzero component of the cross product of vector (\(\overline{\mathrm{P}}-\overline{\mathrm{B}}\)) upon \((\overline{\mathrm{C}}-\overline{\mathrm{B}}\)) will be positive. Thus for no shading, this third component will be given by
\[
[(\overline{\mathrm{P}}-\overline{\mathrm{B}}) \times(\overline{\mathrm{C}}-\overline{\mathrm{B}})]_{3}=\left(\alpha^{\prime}-1\right)\left(1+\lambda_{2}\right)-\beta^{\prime} \lambda_{1}>0
\]

If this quantity is zero or negative, \(\overline{\mathbf{P}}\) lies on or to the left of line BC. Similarly, the condition that the point lie above line \(C D\) is
\[
[(\overline{\mathrm{C}}-\overline{\mathrm{D}}) \times(\overline{\mathrm{Q}}-\overline{\mathrm{D}})]_{3}=\left(1+\lambda_{1}\right)\left(\beta^{\prime}-1\right)-\lambda_{2} \alpha^{\prime}>0
\]

\section*{APPENDIX C - Concluded}

The five tests for shading, in the order of execution, are thus
(1) \(0<\gamma<1\)
(2) \(\alpha^{\prime} \geqq 0\)
(3) \(\beta \geqq 0\)
(4) \(\left(\alpha^{\prime}-1\right)\left(1+\lambda_{2}\right)-\beta^{\prime} \cdot \lambda_{1} \leqq 0\)
(5) \(\left(\beta^{\prime}-1\right)\left(1+\lambda_{1}\right)-\alpha^{\prime} \cdot \lambda_{2} \leqq 0\)

If any one of these fails, there is no shading between the two points by the quadrilateral \(A B C D\). They must all hold for shading to occur.

\section*{REFERENCES}
1. Eckert, E. R. G.; and Drake, Robert M., Jr.: Heat and Mass Transfer. McGraw-Hill Book Co., Inc., 1959.
2. Goerss, R. H.: Computer Analysis of Satellite Thermal Behavior. Spacecraft and Space Systems, Radio Corp. Amer., 1966, pp. 30-33.
3. Gebhart, Benjamin: Heat Transfer. McGraw-Hill Book Co., Inc., c. 1961.

Figure 1.- Location of three sets of sample nodes on the Meteoroid Technology Satellite.

Figure 2.- Temperature history of outer face of upper velocity detector.

Figure 3.- Temperature histories of horizontal wing detector and its bumper shields.

Figure 4.- Temperature history of vertical wing detector and its bumper shields.

Figure 5.- Schematic cross section of a pressurized-cell meteoroid detector with bumpers.

C

Figure 6.- Plane quadrilateral with \(n \times n\) grid formed by dividing each side into \(n\) equal segments, with coordinate parameters \(j\) and k illustrated.

\[
\begin{aligned}
& \text { O5U OO1 } 5851 \text { 3DS } 7019500903 \\
& \text { AIR FORCE WEAPONS LABORATORY/WLOL/ } \\
& \text { KIRTLAND AFB, NEW MEXICO } 87117
\end{aligned}
\]

ATT E. LOU BOWMAN, CHIEF, TECH. LIBRAKY
"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of buman knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
\(\therefore\) Natiońal Aeronautics and Space Act of 1958

\section*{NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS}

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

\section*{TECHNICAL MEMORANDUMS:}

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

\section*{SCIENTIFIC AND TECHNICAL INFORMATION DIVISION \\ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION \\ Washington, D.C. 20546}```

