115 research outputs found
Diagonal deformations of thin center vortices and their stability in Yang-Mills theories
The importance of center vortices for the understanding of the confining
properties of SU(N) Yang-Mills theories is well established in the lattice.
However, in the continuum, there is a problem concerning the relevance of
center vortex backgrounds. They display the so called Savvidy-Nielsen-Olesen
instability, associated with a gyromagnetic ratio for the
off-diagonal gluons.
In this work, we initially consider the usual definition of a {\it thin}
center vortex and rewrite it in terms of a local color frame in SU(N)
Yang-Mills theories. Then, we define a thick center vortex as a diagonal
deformation of the thin object. Besides the usual thick background profile,
this deformation also contains a frame defect coupled with gyromagnetic ratio
, originated from the charged sector. As a consequence, the
analysis of stability is modified. In particular, we point out that the defect
should stabilize a vortex configuration formed by a pair of straight components
separated by an appropriate finite distance.Comment: 20 pages, LaTe
Search for Axionlike and Scalar Particles with the NA64 Experiment
We carried out a model-independent search for light scalar (s) and
pseudoscalar axionlike (a) particles that couple to two photons by using the
high-energy CERN SPS H4 electron beam. The new particles, if they exist, could
be produced through the Primakoff effect in interactions of hard bremsstrahlung
photons generated by 100 GeV electrons in the NA64 active dump with virtual
photons provided by the nuclei of the dump. The a(s) would penetrate the
downstream HCAL module, serving as shielding, and would be observed either
through their decay in the rest of the HCAL detector or
as events with large missing energy if the a(s) decays downstream of the HCAL.
This method allows for the probing the a(s) parameter space, including those
from generic axion models, inaccessible to previous experiments. No evidence of
such processes has been found from the analysis of the data corresponding to
electrons on target allowing to set new limits on the
-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila
Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys.
Rev. Let
Measurement-Induced Entanglement for Excitation Stored in Remote Atomic Ensembles
A critical requirement for diverse applications in Quantum Information
Science is the capability to disseminate quantum resources over complex quantum
networks. For example, the coherent distribution of entangled quantum states
together with quantum memory to store these states can enable scalable
architectures for quantum computation, communication, and metrology. As a
significant step toward such possibilities, here we report observations of
entanglement between two atomic ensembles located in distinct apparatuses on
different tables. Quantum interference in the detection of a photon emitted by
one of the samples projects the otherwise independent ensembles into an
entangled state with one joint excitation stored remotely in 10^5 atoms at each
site. After a programmable delay, we confirm entanglement by mapping the state
of the atoms to optical fields and by measuring mutual coherences and photon
statistics for these fields. We thereby determine a quantitative lower bound
for the entanglement of the joint state of the ensembles. Our observations
provide a new capability for the distribution and storage of entangled quantum
states, including for scalable quantum communication networks .Comment: 13 pages, 4 figures Submitted for publication on August 31 200
Nonperturbative contributions to the quark form factor at high energy
The analysis of nonperturbative effects in high energy asymptotics of the
electomagnetic quark form factor is presented. It is shown that the
nonperturbative effects determine the initial value for the perturbative
evolution of the quark form factor and find their general structure with
respect to the high energy asymptotics. Within the Wilson integral formalism
which is natural for investigation of the soft, IR sensitive, part of the
factorized form factor, the structure of the instanton induced effects in the
evolution equation is discussed. It is demonstrated that the instanton
contributions result in the finite renormalization of the subleading
perturbative result and numerically are characterized by small factor
reflecting the diluteness of the QCD vacuum within the instanton liquid model.
The relevance of the IR renormalon induced effects in high energy asymptotic
behaviour is discussed. The consequences of the various analytization
procedures of the strong coupling constant in the IR domain are considered.Comment: REVTeX, 12 pages, 1 figure. Important references and discussions
added, misprints corrected, minor changes in tex
On the renormalization of multiparton webs
We consider the recently developed diagrammatic approach to soft-gluon
exponentiation in multiparton scattering amplitudes, where the exponent is
written as a sum of webs - closed sets of diagrams whose colour and kinematic
parts are entangled via mixing matrices. A complementary approach to
exponentiation is based on the multiplicative renormalizability of intersecting
Wilson lines, and their subsequent finite anomalous dimension. Relating this
framework to that of webs, we derive renormalization constraints expressing all
multiple poles of any given web in terms of lower-order webs. We examine these
constraints explicitly up to four loops, and find that they are realised
through the action of the web mixing matrices in conjunction with the fact that
multiple pole terms in each diagram reduce to sums of products of lower-loop
integrals. Relevant singularities of multi-eikonal amplitudes up to three loops
are calculated in dimensional regularization using an exponential infrared
regulator. Finally, we formulate a new conjecture for web mixing matrices,
involving a weighted sum over column entries. Our results form an important
step in understanding non-Abelian exponentiation in multiparton amplitudes, and
pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure
On soft singularities at three loops and beyond
We report on further progress in understanding soft singularities of massless
gauge theory scattering amplitudes. Recently, a set of equations was derived
based on Sudakov factorization, constraining the soft anomalous dimension
matrix of multi-leg scattering amplitudes to any loop order, and relating it to
the cusp anomalous dimension. The minimal solution to these equations was shown
to be a sum over color dipoles. Here we explore potential contributions to the
soft anomalous dimension that go beyond the sum-over-dipoles formula. Such
contributions are constrained by factorization and invariance under rescaling
of parton momenta to be functions of conformally invariant cross ratios.
Therefore, they must correlate the color and kinematic degrees of freedom of at
least four hard partons, corresponding to gluon webs that connect four eikonal
lines, which first appear at three loops. We analyze potential contributions,
combining all available constraints, including Bose symmetry, the expected
degree of transcendentality, and the singularity structure in the limit where
two hard partons become collinear. We find that if the kinematic dependence is
solely through products of logarithms of cross ratios, then at three loops
there is a unique function that is consistent with all available constraints.
If polylogarithms are allowed to appear as well, then at least two additional
structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4;
added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11,
5.12 and 5.29); 38 pages, 3 figure
The Spin Structure of the Nucleon
We present an overview of recent experimental and theoretical advances in our
understanding of the spin structure of protons and neutrons.Comment: 84 pages, 29 figure
Observation of a J^PC = 1-+ exotic resonance in diffractive dissociation of 190 GeV/c pi- into pi- pi- pi+
The COMPASS experiment at the CERN SPS has studied the diffractive
dissociation of negative pions into the pi- pi- pi+ final state using a 190
GeV/c pion beam hitting a lead target. A partial wave analysis has been
performed on a sample of 420000 events taken at values of the squared
4-momentum transfer t' between 0.1 and 1 GeV^2/c^2. The well-known resonances
a1(1260), a2(1320), and pi2(1670) are clearly observed. In addition, the data
show a significant natural parity exchange production of a resonance with
spin-exotic quantum numbers J^PC = 1-+ at 1.66 GeV/c^2 decaying to rho pi. The
resonant nature of this wave is evident from the mass-dependent phase
differences to the J^PC = 2-+ and 1++ waves. From a mass-dependent fit a
resonance mass of 1660 +- 10+0-64 MeV/c^2 and a width of 269+-21+42-64 MeV/c^2
is deduced.Comment: 7 page, 3 figures; version 2 gives some more details, data unchanged;
version 3 updated authors, text shortened, data unchange
Improvement of the detection efficiency calibration and homogeneity measurement of Si-SPAD detectors
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
- …
