102 research outputs found

    Diagonal deformations of thin center vortices and their stability in Yang-Mills theories

    Full text link
    The importance of center vortices for the understanding of the confining properties of SU(N) Yang-Mills theories is well established in the lattice. However, in the continuum, there is a problem concerning the relevance of center vortex backgrounds. They display the so called Savvidy-Nielsen-Olesen instability, associated with a gyromagnetic ratio gm(b)=2g^{(b)}_m=2 for the off-diagonal gluons. In this work, we initially consider the usual definition of a {\it thin} center vortex and rewrite it in terms of a local color frame in SU(N) Yang-Mills theories. Then, we define a thick center vortex as a diagonal deformation of the thin object. Besides the usual thick background profile, this deformation also contains a frame defect coupled with gyromagnetic ratio gm(d)=1g^{(d)}_m=1, originated from the charged sector. As a consequence, the analysis of stability is modified. In particular, we point out that the defect should stabilize a vortex configuration formed by a pair of straight components separated by an appropriate finite distance.Comment: 20 pages, LaTe

    Measurement-Induced Entanglement for Excitation Stored in Remote Atomic Ensembles

    Get PDF
    A critical requirement for diverse applications in Quantum Information Science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory to store these states can enable scalable architectures for quantum computation, communication, and metrology. As a significant step toward such possibilities, here we report observations of entanglement between two atomic ensembles located in distinct apparatuses on different tables. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10^5 atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and by measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations provide a new capability for the distribution and storage of entangled quantum states, including for scalable quantum communication networks .Comment: 13 pages, 4 figures Submitted for publication on August 31 200

    Search for Axionlike and Scalar Particles with the NA64 Experiment

    Get PDF
    We carried out a model-independent search for light scalar (s) and pseudoscalar axionlike (a) particles that couple to two photons by using the high-energy CERN SPS H4 electron beam. The new particles, if they exist, could be produced through the Primakoff effect in interactions of hard bremsstrahlung photons generated by 100 GeV electrons in the NA64 active dump with virtual photons provided by the nuclei of the dump. The a(s) would penetrate the downstream HCAL module, serving as shielding, and would be observed either through their a(s)→γγa(s)\to\gamma \gamma decay in the rest of the HCAL detector or as events with large missing energy if the a(s) decays downstream of the HCAL. This method allows for the probing the a(s) parameter space, including those from generic axion models, inaccessible to previous experiments. No evidence of such processes has been found from the analysis of the data corresponding to 2.84×10112.84\times10^{11} electrons on target allowing to set new limits on the a(s)γγa(s)\gamma\gamma-coupling strength for a(s) masses below 55 MeV.Comment: This publication is dedicated to the memory of our colleague Danila Tlisov. 7 pages, 5 figures, revised version accepted for publication in Phys. Rev. Let

    Nonperturbative contributions to the quark form factor at high energy

    Full text link
    The analysis of nonperturbative effects in high energy asymptotics of the electomagnetic quark form factor is presented. It is shown that the nonperturbative effects determine the initial value for the perturbative evolution of the quark form factor and find their general structure with respect to the high energy asymptotics. Within the Wilson integral formalism which is natural for investigation of the soft, IR sensitive, part of the factorized form factor, the structure of the instanton induced effects in the evolution equation is discussed. It is demonstrated that the instanton contributions result in the finite renormalization of the subleading perturbative result and numerically are characterized by small factor reflecting the diluteness of the QCD vacuum within the instanton liquid model. The relevance of the IR renormalon induced effects in high energy asymptotic behaviour is discussed. The consequences of the various analytization procedures of the strong coupling constant in the IR domain are considered.Comment: REVTeX, 12 pages, 1 figure. Important references and discussions added, misprints corrected, minor changes in tex

    Matrix Models for the Black Hole Information Paradox

    Get PDF
    We study various matrix models with a charge-charge interaction as toy models of the gauge dual of the AdS black hole. These models show a continuous spectrum and power-law decay of correlators at late time and infinite N, implying information loss in this limit. At finite N, the spectrum is discrete and correlators have recurrences, so there is no information loss. We study these models by a variety of techniques, such as Feynman graph expansion, loop equations, and sum over Young tableaux, and we obtain explicitly the leading 1/N^2 corrections for the spectrum and correlators. These techniques are suggestive of possible dual bulk descriptions. At fixed order in 1/N^2 the spectrum remains continuous and no recurrence occurs, so information loss persists. However, the interchange of the long-time and large-N limits is subtle and requires further study.Comment: 35 pages, 11 eps figures; v.2 minor typos fixe

    From correlation functions to Wilson loops

    Get PDF
    We start with an n-point correlation function in a conformal gauge theory. We show that a special limit produces a polygonal Wilson loop with nn sides. The limit takes the nn points towards the vertices of a null polygonal Wilson loop such that successive distances xi,i+12→0x^2_{i,i+1} \to 0. This produces a fast moving particle that generates a "frame" for the Wilson loop. We explain in detail how the limit is approached, including some subtle effects from the propagation of a fast moving particle in the full interacting theory. We perform perturbative checks by doing explicit computations in N=4 super-Yang-Mills.Comment: 37 pages, 10 figures; typos corrected, references adde

    On soft singularities at three loops and beyond

    Get PDF
    We report on further progress in understanding soft singularities of massless gauge theory scattering amplitudes. Recently, a set of equations was derived based on Sudakov factorization, constraining the soft anomalous dimension matrix of multi-leg scattering amplitudes to any loop order, and relating it to the cusp anomalous dimension. The minimal solution to these equations was shown to be a sum over color dipoles. Here we explore potential contributions to the soft anomalous dimension that go beyond the sum-over-dipoles formula. Such contributions are constrained by factorization and invariance under rescaling of parton momenta to be functions of conformally invariant cross ratios. Therefore, they must correlate the color and kinematic degrees of freedom of at least four hard partons, corresponding to gluon webs that connect four eikonal lines, which first appear at three loops. We analyze potential contributions, combining all available constraints, including Bose symmetry, the expected degree of transcendentality, and the singularity structure in the limit where two hard partons become collinear. We find that if the kinematic dependence is solely through products of logarithms of cross ratios, then at three loops there is a unique function that is consistent with all available constraints. If polylogarithms are allowed to appear as well, then at least two additional structures are consistent with the available constraints.Comment: v2: revised version published in JHEP (minor corrections in Sec. 4; added discussion in Sec. 5.3; refs. added); v3: minor corrections (eqs. 5.11, 5.12 and 5.29); 38 pages, 3 figure

    On the renormalization of multiparton webs

    Get PDF
    We consider the recently developed diagrammatic approach to soft-gluon exponentiation in multiparton scattering amplitudes, where the exponent is written as a sum of webs - closed sets of diagrams whose colour and kinematic parts are entangled via mixing matrices. A complementary approach to exponentiation is based on the multiplicative renormalizability of intersecting Wilson lines, and their subsequent finite anomalous dimension. Relating this framework to that of webs, we derive renormalization constraints expressing all multiple poles of any given web in terms of lower-order webs. We examine these constraints explicitly up to four loops, and find that they are realised through the action of the web mixing matrices in conjunction with the fact that multiple pole terms in each diagram reduce to sums of products of lower-loop integrals. Relevant singularities of multi-eikonal amplitudes up to three loops are calculated in dimensional regularization using an exponential infrared regulator. Finally, we formulate a new conjecture for web mixing matrices, involving a weighted sum over column entries. Our results form an important step in understanding non-Abelian exponentiation in multiparton amplitudes, and pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure
    • …
    corecore