We consider the recently developed diagrammatic approach to soft-gluon
exponentiation in multiparton scattering amplitudes, where the exponent is
written as a sum of webs - closed sets of diagrams whose colour and kinematic
parts are entangled via mixing matrices. A complementary approach to
exponentiation is based on the multiplicative renormalizability of intersecting
Wilson lines, and their subsequent finite anomalous dimension. Relating this
framework to that of webs, we derive renormalization constraints expressing all
multiple poles of any given web in terms of lower-order webs. We examine these
constraints explicitly up to four loops, and find that they are realised
through the action of the web mixing matrices in conjunction with the fact that
multiple pole terms in each diagram reduce to sums of products of lower-loop
integrals. Relevant singularities of multi-eikonal amplitudes up to three loops
are calculated in dimensional regularization using an exponential infrared
regulator. Finally, we formulate a new conjecture for web mixing matrices,
involving a weighted sum over column entries. Our results form an important
step in understanding non-Abelian exponentiation in multiparton amplitudes, and
pave the way for higher-loop computations of the soft anomalous dimension.Comment: 60 pages, 15 figure