822 research outputs found

    Finding the reconstructions of semiconductor surfaces via a genetic algorithm

    Full text link
    In this article we show that the reconstructions of semiconductor surfaces can be determined using a genetic procedure. Coupled with highly optimized interatomic potentials, the present approach represents an efficient tool for finding and sorting good structural candidates for further electronic structure calculations and comparison with scanning tunnelling microscope (STM) images. We illustrate the method for the case of Si(105), and build a database of structures that includes the previously found low-energy models, as well as a number of novel configurations.Comment: 4 figures, 1 tabl

    Field diffeomorphisms and the algebraic structure of perturbative expansions

    Get PDF
    We consider field diffeomorphisms in the context of real scalar field theories. Starting from free field theories we apply non-linear field diffeomorphisms to the fields and study the perturbative expansion for the transformed theories. We find that tree level amplitudes for the transformed fields must satisfy BCFW type recursion relations for the S-matrix to remain trivial. For the massless field theory these relations continue to hold in loop computations. In the massive field theory the situation is more subtle. A necessary condition for the Feynman rules to respect the maximal ideal and co-ideal defined by the core Hopf algebra of the transformed theory is that upon renormalization all massive tadpole integrals (defined as all integrals independent of the kinematics of external momenta) are mapped to zero.Comment: 8 pages, 2 figure

    Final State Rescattering and Color-suppressed \bar B^0-> D^{(*)0} h^0 Decays

    Full text link
    The color-suppressed \bar B^0-> D^{(*)0}\pi^0, D^{(*)0}\eta, D^0\omega decay modes have just been observed for the first time. The rates are all larger than expected, hinting at the presence of final state interactions. Considering \bar B^0-> D^{(*)0}\pi^0 mode alone, an elastic D^{(*)}\pi -> D^{(*)}\pi rescattering phase difference \delta \equiv \delta_{1/2} - \delta_{3/2} \sim 30^\circ would suffice, but the \bar B^0-> D^{(*)0}\eta, D^0\omega modes compel one to extend the elastic formalism to SU(3) symmetry. We find that a universal a_2/a_1=0.25 and two strong phase differences 20^\circ \sim \theta < \delta < \delta^\prime \sim 50^\circ can describe both DP and D^*P modes rather well; the large phase of order 50^\circ is needed to account for the strength of {\it both} the D^{(*)0}\pi^0 and D^{(*)0}\eta modes. For DV modes, the nonet symmetry reduces the number of physical phases to just one, giving better predictive power. Two solutions are found. We predict the rates of the \bar B^0-> D^{+}_s K^-, D^{*+}_s K^-, D^0\rho^0, D^+_s K^{*-} and D^0\phi modes, as well as \bar B^0-> D^{0}\bar K^0, D^{*0}\bar K^0, D^{0}\bar K^{*0} modes. The formalism may have implications for rates and CP asymmetries of charmless modes.Comment: REVTeX4, 18 pages, 5 figures, to appear in Phys. Rev.

    Morphology and Orientation Selection of Non-Metallic Inclusions in Electrified Molten Metal

    Get PDF
    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modelling and numerical calculation. Two geometric factors, namely the circularity (fc) and alignment ratio (fe) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follows the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations

    A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun's Subsurface, Surface, Corona, and Sunspot Groups

    Full text link
    Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985-2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94Rsun, 0.95Rsun,...,1.0Rsun measured by Global Oscillation Network Group (GONG) during the period 1995-2010, ii) the data on the soft X-ray corona determined from Yohkoh/SXT full disk images for the years 1992-2001, iii) the data on small bright coronal structures (SBCS) which were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998-2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986-2007. A large portion (up to approximate 30 deg latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94Rsun and 0.98Rsun.The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging that of the equatorial-rotation rate determined from the GONG measurements by one to two years.The amplitude of the latter is very small.The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data.The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (> 3 deg per day) of the sunspot groups. Implications of these results are pointed out.Comment: 22 pages, 10 figures, accepted by Solar Physic

    Single-Proton Removal Reaction Study of 16B

    Get PDF
    The low-lying level structure of the unbound system 16^{16}B has been investigated via single-proton removal from a 35 MeV/nucleon 17^{17}C beam. The coincident detection of the beam velocity 15^{15}B fragment and neutron allowed the relative energy of the in-flight decay of 16^{16}B to be reconstructed. The resulting spectrum exhibited a narrow peak some 85 keV above threshold. It is argued that this feature corresponds to a very narrow (Γ\Gamma \ll 100 keV) resonance, or an unresolved multiplet, with a dominant π(p3/2)1ν(d5/23)J=3/2+\pi (p_{3/2})^{-1} \otimes \nu (d_{5/2}^3)_{J=3/2^+} + π(p3/2)1ν(d5/22,s1/2)J=3/2+\pi (p_{3/2})^{-1} \otimes \nu (d_{5/2}^2,s_{1/2})_{J=3/2^+} configuration which decays by d-wave neutron emission.Comment: 16 pages, 5 figures, 1 table, submitted to Phys. Lett.

    Trapped two-component Fermi gases with up to six particles: Energetics, structural properties, and molecular condensate fraction

    Get PDF
    We investigate small equal-mass two-component Fermi gases under external spherically symmetric confinement in which atoms with opposite spins interact through a short-range two-body model potential. We employ a non-perturbative microscopic framework, the stochastic variational approach, and determine the system properties as functions of the interspecies s-wave scattering length a, the orbital angular momentum L of the system, and the numbers N1 and N2 of spin-up and spin-down atoms (with N1-N2 =0 or 1 and N < 7, where N=N1+N2). At unitarity, we determine the energies of the five- and six-particle systems for various ranges r0 of the underlying two-body model potential and extrapolate to the zero-range limit. These energies serve as benchmark results that can be used to validate and assess other numerical approaches. We also present structural properties such as the pair distribution function and the radial density. Furthermore, we analyze the one-body and two-body density matrices. A measure for the molecular condensate fraction is proposed and applied. Our calculations show explicitly that the natural orbitals and the momentum distributions of atomic Fermi gases approach those characteristic for a molecular Bose gas if the s-wave scattering length a, a>0, is sufficiently small.Comment: 21 pages, 15 figures; accepted for publication in special issue of CRA

    Final-State Phases in BDπ,DπB \to D \pi, D^* \pi, and DρD \rho Decays

    Full text link
    The final-state phases in BˉDπ,Dπ\bar{B} \to D \pi, D^* \pi, and DρD \rho decays appear to follow a pattern similar to those in DKˉπD \to \bar{K} \pi, Kˉπ\bar{K}^* \pi, and Kˉρ\bar{K} \rho decays. Each set of processes is characterized by three charge states but only two independent amplitudes, so the amplitudes form triangles in the complex plane. For the first two sets the triangles appear to have non-zero area, while for the DρD \rho or Kˉρ\bar{K} \rho decays the areas of the triangles are consistent with zero. Following an earlier discussion of this behavior for DD decays, a similar analysis is performed for B decays, and the relative phases and magnitudes of contributing amplitudes are determined. The significance of recent results on \ob \to D^{(*)0} \bar{K}^{(*)0} is noted. Open theoretical and experimental questions are indicated.Comment: 16 pages, LaTeX, 3 figures, to be submitted to Phys. Rev. D. References added; comments on new experimental results and analysi

    Low temperature electronic properties of Sr_2RuO_4 II: Superconductivity

    Full text link
    The body centered tetragonal structure of Sr_2RuO_4 gives rise to umklapp scattering enhanced inter-plane pair correlations in the d_{yz} and d_{zx} orbitals. Based on symmetry arguments, Hund's rule coupling, and a bosonized description of the in-plane electron correlations the superconducting order parameter is found to be a orbital-singlet spin-triplet with two spatial components. The spatial anisotropy is 7%. The different components of the order parameter give rise to two-dimensional gapless fluctuations. The phase transition is of third order. The temperature dependence of the pair density, specific heat, NQR, Knight shift, and susceptibility are in agreement with experimental results.Comment: 20 pages REVTEX, 3 figure

    Elastic and inelastic SU(3)-breaking final-state interactions in B decays to pseudoscalar mesons

    Full text link
    We discuss all contributions from Zweig-rule-satisfying SU(3)-breaking final state interactions (FSIs)in the B -> PP decays (neglecting charmed intermediate states), where PP=pi pi, pi K, KK, pi eta (eta'), and K eta (eta'). First, effects of SU(3) breaking in rescattering through Pomeron exchange are studied. Then, after making a plausible assumption concerning the pattern of SU(3) breaking in non-Pomeron FSIs, we give general formulas for how the latter modify short-distance (SD) amplitudes. In the SU(3) limit, these formulas depend on three effective parameters characterizing the strength of all non-Pomeron rescattering effects. We point out that the experimental bounds on the B -> K^+K^- branching ratio may limit the value of only one of these FSI parameters. Thus, the smallness of the B -> K^+K^- decay rate does not imply negligible rescattering effects in other decays. Assuming a vanishing value of this parameter, we perform various fits to the available B -> PP branching ratios. The fits determine the quark-diagram SD amplitudes, the two remaining FSI parameters and the weak angle gamma. While the set of all B -> PP branching ratios is well described with gamma around its expected SM value, the fits permit other values of gamma as well. For a couple of such good fits, we predict asymmetries for the B -> K pi, pi^+ eta (eta'), K^+ eta (eta') decays as well as the values of the CP-violating parameters S_{pi pi} and C_{pi pi} for the time-dependent rate of B^0(t) -> pi^+ pi^-. Apart from a problem with the recent B^+ -> pi^+ eta asymmetry measurement, comparison with the data seems to favour the values of gamma in accordance with SM expectations.Comment: 27 pages, 5 figure
    corecore