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We investigate small equal-mass two-component Fermi gases under external spherically
symmetric confinement in which atoms with opposite spins interact through a short-
range two-body model potential. We employ a non-perturbative microscopic framework,
the stochastic variational approach, and determine the system properties as functions
of the interspecies s-wave scattering length as , the orbital angular momentum L of the
system, and the numbers N1 and N2 of spin-up and spin-down atoms (with N1 − N2 = 0
or 1 and N � 6, where N = N1 + N2). At unitarity, we determine the energies of the
five- and six-particle systems for various ranges r0 of the underlying two-body model
potential and extrapolate to the zero-range limit. These energies serve as benchmark
results that can be used to validate and assess other numerical approaches. We also
present structural properties such as the pair distribution function and the radial density.
Furthermore, we analyze the one-body and two-body density matrices. A measure for the
molecular condensate fraction is proposed and applied. Our calculations show explicitly
that the natural orbitals and the momentum distributions of atomic Fermi gases approach
those characteristic for a molecular Bose gas if the s-wave scattering length as , as > 0, is
sufficiently small.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous étudions de petits systèmes gazeux de fermions à deux composantes de spin de
même masse dans un potentiel de piégeage isotrope, dans lesquels les particules de spins
opposés interagissent par un potentiel binaire à courte portée. Nous utilisons une approche
microscopique non perturbative, la méthode variationnelle stochastique, pour déterminer
les propriétés du système en fonction de la longueur de diffusion as dans l’onde s entre les
deux états de spin, du moment cinétique orbital L du système, et des nombres N1 et N2
de particules dans les états de spin en haut et de spin en bas (avec N1 − N2 = 0 ou 1, et
N ≡ N1 + N2 � 6). À la limite unitaire, nous déterminons les énergies propres des systèmes
à cinq et six particules pour différentes valeurs de la portée r0 du potentiel d’interaction
binaire et nous extrapolons à la limite de portée nulle. Ces énergies propres constituent un
banc d’essai qui permettra de tester d’autres approches numériques. Nous présentons aussi
quelques propriétés structurelles comme la fonction de distribution de paires et la densité
radiale. De plus, nous analysons les opérateurs densité à un corps et à deux corps. Nous
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proposons et mettons en œuvre une mesure de la fraction condensée moléculaire. Nos
calculs montrent explicitement que les orbites naturelles et les distributions en impulsion
des gaz de Fermi atomiques convergent vers celles caractéristiques d’un condensat de Bose
moléculaire lorsque la longueur de diffusion as dans l’onde s tend vers zéro par valeurs
positives.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Over the past few years, the interest in small trapped Bose and Fermi gases, and mixtures thereof, has increased tremen-
dously for a number of reasons. First, atomic gases provide an ideal platform for investigating phenomena related to Efimov
physics [1–3]. While the majority of investigations of the Efimov effect have focused on the three-body system, larger sys-
tems have attracted considerable attention recently from theoretical and experimental groups [4–15]. Second, small trapped
atomic systems can be realized by loading an atomic gas into an optical lattice [16–19]. If the tunneling between lattice
sites is small and if the interactions between neighboring sites can be neglected, then each lattice site provides a realization
of a trapped few-body system. In this setting, one interesting prediction is that effective three- and higher-body interac-
tions should emerge [20]. Third, small atomic gases can be viewed as a bridge between two-body and many-body systems
(see, e.g., Refs. [21–24]). In most cases, the two-body system is well characterized, making a bottom-up approach attractive.
Such an approach treats increasingly larger systems and eventually connects observables for mesoscopic systems with those
predicted by many-body theories, e.g., through the use of the local density approximation. Fourth, few-body systems often
times allow for highly accurate treatments, thereby providing much needed benchmark results. For example, a number of
lattice-based approaches are presently being applied to trapped cold atom systems (see Refs. [25–30] for lattice-based treat-
ments of the homogeneous system). While these approaches promise to be very powerful, currently only a few benchmark
results are available that allow for a careful assessment of their validity regimes.

This paper treats equal-mass two-component Fermi gases under external harmonic confinement with short-range s-wave
interactions. Our work builds on the rapidly expanding number of papers that treat trapped three-dimensional few-fermion
systems (see, e.g., Refs. [21–24,31–42]). The ground state of trapped equal-mass two-component Fermi gases, e.g., has been
investigated numerically by the fixed-node diffusion Monte Carlo approach [21–23,39] and the stochastic variational ap-
proach [21,22,36,40,42]. In the strongly-interacting unitary regime, the properties of the system—motivated by analytical
treatments that exploit the scale invariance of equal-mass Fermi gases at unitarity [31,32]—have been interpreted within
the hyperspherical framework [21,22]. In some cases, the excitation spectrum at unitarity has also been investigated [21,22,
32,33]. In addition, small two-component Fermi gases have been investigated as a function of the s-wave scattering length
as [22,34–37,40–42]. For small |as|, as < 0, the energy crossover curve has been analyzed by applying first order pertur-
bation theory to a weakly-attractive atomic Fermi gas [22,37,42]. For small |as|, as > 0, in contrast, the energy crossover
curve has been analyzed by applying first order perturbation theory to a weakly-repulsive molecular gas [22,37,42] (see also
Refs. [43–45]). Small two-component Fermi gases have also provided the first high precision tests [40] of the Tan relations
[46–48] that apply to both inhomogeneous and homogeneous s-wave interacting Fermi gases.

Following up on our earlier work, this paper presents new results for trapped equal-mass Fermi gases with up to N = 6,
where N = N1 + N2 and N1 − N2 = 0 or 1. Our main results are: (i) We report extrapolated zero-range energies for five-
and six-particle systems with (N1, N2) = (3,2) and (3,3) for various angular momenta at unitarity. (ii) We present energy
crossover curves for the (N1, N2) = (3,2) system for the ground state and various excited states. (iii) We present a detailed
analysis of the dependence of the few-particle energies on the range of the underlying two-body potential. (iv) We present
structural properties for the (N1, N2) = (2,1), (2,2), (3,2) and (3,3) systems throughout the crossover, including unitarity.
(v) We quantify the correlations of few-fermion systems by analyzing the one- and two-body density matrices as well as
the momentum distributions. In particular, we propose a measure of the molecular condensate fraction and apply it to
few-fermion systems with up to N = 6 atoms. Related analyses have previously been pursued for bosonic gases [49–51] and
one-dimensional systems [52–54], but we are not aware of analogous studies for trapped three-dimensional two-component
Fermi gases.

Section 2 introduces the system Hamiltonian and the stochastic variational approach employed to solve the time-
independent Schrödinger equation for small trapped two-component systems. In addition, Section 2 reviews the definitions
of the one- and two-body density matrices and their relationship to the natural orbitals and momentum distribution. Sec-
tion 3 presents and interprets our results for various parameter combinations. Lastly, Section 4 summarizes our main results
and concludes. Mathematical derivations and discussions of technical aspects are collected in Appendices A–C.

2. Theoretical background

2.1. System Hamiltonian

Our model Hamiltonian that describes equal-mass two-component Fermi gases with N1 spin-up and N2 spin-down atoms
(N = N1 + N2 and N1 � N2) under external spherically symmetric harmonic confinement with angular trapping frequency
ω reads
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Here, ma denotes the atom mass and �r j the position vector of the jth particle measured with respect to the trap center
(with r jk = |�r j − �rk|); the first N1 position vectors correspond to the spin-up atoms and the last N2 position vectors to the
spin-down atoms. Hamiltonian (1) assumes that like fermions are non-interacting. The interspecies interactions are modeled
through a purely attractive Gaussian two-body potential V tb(r),

V tb(r) = −V 0 exp

[
−

(
r√
2r0

)2]
(2)

We take the range r0 to be much smaller than the harmonic oscillator length aho, where aho = √
h̄/(maω). The depth V 0,

V 0 > 0, and the range r0 are adjusted so that the free-space two-body s-wave scattering length as takes on the desired
value. We restrict ourselves to two-body potentials that support no free-space s-wave two-body bound state and one free-
space s-wave two-body bound state for negative as and positive as , respectively. If the scattering length as is notably larger
than the range r0, then the properties of small trapped two-component Fermi gases are universal, i.e., independent of the
details of the underlying two-body potential [43,55–64]. Thus, we limit ourselves to parameter combinations with r0 � as

and r0 � aho. For these parameter combinations, energy shifts due to p-wave or higher partial wave scattering between
unlike fermions are negligible. In a few cases, we perform calculations for different r0 and explicitly extrapolate to the
r0 → 0 limit.

Our goal is to solve the time-independent Schrödinger equation for the Hamiltonian given in Eq. (1), and to analyze
the energy spectrum and structural properties. To this end, we use that the total wave function ψtot(�r1, . . . ,�rN) separates
into a relative part ψrel and a center-of-mass part ψcm. The relative wave function ψrel is written in terms of Jacobi vec-
tors �ρ1, . . . , �ρN−1; its determination through the stochastic variational approach is reviewed briefly in the next subsection.
Throughout, we assume that center-of-mass excitations are absent, i.e., we assume that the center of mass wave function is
given by

ψcm(�Rcm) = Ncm exp

(
− �R2

cm

2a2
ho/N

)
(3)

where Ncm denotes a normalization constant and �Rcm the center of mass vector, �Rcm = ∑N
j=1 �r j/N . The relative wave

function ψrel is a simultaneous eigen function of the relative Hamiltonian Hrel, the square of the relative orbital angular
momentum operator, the z-projection of the relative orbital angular momentum operator and the parity operator. Corre-
spondingly, ψrel and the associated eigen energies Erel are labeled by the quantum numbers L, ML and Π .

2.2. Stochastic variational treatment

To determine the relative eigen functions ψrel and relative eigen energies Erel, we employ the stochastic variational (SV)
approach [65–68]. Our implementation follows that described in Refs. [22,36,42], and here we only emphasize a few key
points. The SV approach expands the relative wave function ψrel in terms of a basis set. The basis functions themselves are
not linearly independent, and the determination of the eigen energies requires the solution of a generalized eigen value
problem that involves the Hamiltonian matrix and the overlap matrix. Just as with other basis set expansion techniques,
the SV approach results in a variational upper bound to the exact eigen energies, i.e., to the ground state energy and to
the energies of excited states. For the interaction and confining potentials chosen in this work, the functional forms of the
basis functions allow for an analytical evaluation of the Hamiltonian and overlap matrix elements. The proper fermionic
symmetry of the basis functions is ensured through the application of a permutation operator A. For the (3,3) system,
e.g., A consists of 36 permutations (6 permutations each are required to anti-symmetrize the three spin-up and the three
spin-down fermions).

While the functional forms of the basis functions are relatively simple, they are sufficiently flexible to describe short-
range correlations that develop on a length scale of the order of the range r0 and long-range correlations that develop
on a length scale of the order of the oscillator length aho [36]. This is achieved through the use of a comparatively large
number of variational parameters that are optimized semi-stochastically for each basis function. In this work, we employ
basis functions that are characterized by N(N − 1)/2 to N(N − 1)/2 + 3(N − 1) parameters [see Eq. (A.1) of Appendix A
for an explicit expression for the basis functions with LΠ = 0+ symmetry and Eq. (6.27) of Ref. [67], or Eqs. (36) and (37)
of Ref. [42], for an explicit expression of the basis functions with arbitrary L employed in this work]. Generally speaking,
the treatment of states with LΠ = 0+ is numerically less challenging than that of states with other symmetries. As the
range r0 decreases or N increases, the numerical complexity of the calculation increases. Also, for a given r0 and (N1, N2)

combination, the numerical complexity increases with increasing angular momentum. The largest calculation reported in
Section 3 uses Nb = 3000, where Nb is the number of fully anti-symmetrized basis functions. In many cases, however,
the optimization procedure of the variational parameters is more important than the size of the basis set itself. In our
implementation, e.g., a notable fraction of the computational efforts is directed at optimizing the basis functions for a given
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Nb as opposed to increasing Nb . The motivation for keeping the basis set relatively small is two-fold. First, the use of
highly optimized basis functions mitigates essentially all problems that would otherwise arise from the linear dependence
of the basis functions [36,67]. Second, the computational time required to calculate structural properties increases with
increasing Nb .

To calculate structural properties, we follow two different approaches. Where possible, we determine the matrix elements
for a given operator A analytically, and determine the quantity 〈ψtot|A|ψtot〉/〈ψtot|ψtot〉 by simply adding all matrix elements
weighted by the appropriate expansion coefficients. This approach scales quadratically with Nb and is, in most cases, more
efficient than our second approach, a variational Monte Carlo calculation [69] that uses the wave function optimized by
the stochastic variational approach. In particular, we calculate structural observables by performing a Metropolis walk that
samples the probability distribution |ψtot|2/〈ψtot|ψtot〉. The expectation value of A is then determined by averaging over
many possible realizations of the system. At each step, the density |ψtot|2 needs to be calculated, resulting in a scaling
of the computational effort with Nb Nsample, where the number of Metropolis steps Nsample is generally much larger than
Nb . Appendix B details the Monte Carlo sampling scheme for a number of observables that quantify the correlations of
the system. A distinct advantage of the Metropolis sampling approach is that it allows for the evaluation of “conditional
observables” such as the quantity ρ̄red(�R ′, �R), defined below Eq. (15), for which analytical expressions of the matrix elements
are not available.

2.3. Density matrices, occupation numbers and momentum distribution

To quantify the correlations of trapped few-fermion systems, we consider the radial and pair distribution functions
as well as the one- and two-body density matrices [70–73]. The density matrices not only lead to a practical route to
determine the momentum distributions associated with the spin-up and spin-down atoms, but also serve to quantify the
non-local correlations of the system. For example, for trapped single-species Bose gases, an eigen value of the one-body
density matrix of the order of 1 signals a large condensate fraction [49,71,73].1 The situation is different for two-component
fermions [72,73]. Because of the anti-symmetric many-body wave function, none of the natural orbitals associated with the
one-body density matrix can be occupied macroscopically. In fermionic systems, an appreciable condensate fraction only
arises if pairs are being formed [72,73]. To quantify the correlations associated with the formation of pairs, one needs to
analyze the two-body density matrix. In the following, we first introduce local structural observables and then non-local
observables such as the one-body density matrix and the two-body density matrix. The analysis and discussions presented
in this paper are partially motivated by analogous studies of small bosonic 4He and fermionic 3He droplets [74]. While
these systems are significantly more dense than the atomic gases considered here, their characterization is based on the
same theoretical framework.

Specifically, we calculate the radial density P1(�r) for the spin-up atoms, where �r denotes the position vector of the
spin-up atoms from the center of the trap. The normalization is chosen such that∫

P1(�r)d3�r = 1 (4)

Often times, it is more convenient to record the one-dimensional spherically symmetric component P1,sp(r),

P1,sp(r) =
∫

P1
(�r′)δ(r − r′)

4πr′2
d3�r′ (5)

instead. For L = 1 states, e.g., the radial density P1(�r) is not spherically symmetric, and P1(�r) and P1,sp(r) are different. For
spin-imbalanced systems, i.e., for systems with N1 − N2 > 0, the radial densities for the spin-up and spin-down atoms are
different. In this case, we also report P2,sp(r) for the spin-down atoms, which is defined analogously to P1,sp(r). Similarly,
we calculate the pair distribution function P12,sp(r) for a spin-up atom and a spin-down atom. The normalization is the
same as that for the radial densities, i.e., Eq. (4) applies if P1(�r) is replaced by P12(�r).

In the following, we assume that the total wave function ψtot is normalized to 1. The one-body density matrix ρ1(�r′,�r)
for the spin-up atoms is then defined through

ρ1
(�r′,�r) =

∫
· · ·

∫
ψ∗

tot

(�r′,�r2, . . . ,�rN
)
ψtot(�r,�r2, . . . ,�rN)d3�r2 · · · d3�rN (6)

It can be easily checked that the “diagonal element” ρ1(�r,�r) coincides with the radial density P1(�r). The natural orbitals
χi(�r) can be defined as those functions that diagonalize the one-body density matrix [73],

ρ1
(�r′,�r) =

∑
i

niχ
∗
i

(�r′)χi(�r) (7)

1 Throughout this article, we employ a convention in which the occupation numbers add up to 1 and not to the number of particles [see the discussion
around Eqs. (7) and (8)].
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where∫
χ∗

i (�r)χ j(�r)d3�r = δi j (8)

In Eq. (7), the ni denote the occupation numbers,
∑

i ni = 1, and the subscript “i” labels the natural orbitals.2

In practice, it is in general impossible to record the six-dimensional one-body density matrix ρ1(�r′,�r). Thus, we define
the projections ρlm(r′, r),

ρlm
(
r′, r

) = 1

4π

∫ ∫
Y ∗

lm

(
θ ′,ϕ′)ρ1

(�r′,�r)Ylm(θ,ϕ)d2Ωr′ d2Ωr (9)

where d2Ωr = sin θ dθ dϕ . To determine the occupation numbers and natural orbitals, we write χi(�r) = χqlm(�r) =
Rqlm(r)Ylm(Ωr) and determine the radial parts Rqlm(r) and the occupation numbers nqlm by diagonalizing the scaled pro-
jected density matrices 4πρlm(r′, r) for each lm. For a given lm, q = 0 labels the natural orbital with the largest occupation,
q = 1 the natural orbital with the second largest occupation, and so on.

The momentum distribution n1(�k) of the spin-up atoms can be defined in terms of the one-body density matrix
ρ1(�r′,�r) [73],

n1(�k) = 1

(2π)3

∫
ρ1

(�r′,�r) exp
[−i�kT (�r −�r′)]d3�r′ d3�r (10)

Using the definition of the natural orbitals χi(�r) from Eq. (7), it is shown readily that Eq. (10) is equivalent to

n1(�k) =
∑

i

ni
∣∣χ̃i(�k)

∣∣2
(11)

where χ̃i(�k) denotes the Fourier transform of χi(�r),

χ̃i(�k) = 1

(2π)3/2

∫
exp

(−i�kT �r)χi(�r)d3�r (12)

As in the case of the radial density, it is convenient to define the spherical component n1,sp(k) of n1(�k) through

n1,sp(k) =
∫

n1
(�k′)δ(k − k′)

4πk′2
d3�k′ (13)

Appendix A determines analytical expressions for the matrix elements for ρ1(�r′,�r), ρlm(�r′,�r) and n1,sp(k) for the basis
functions that we use to describe states with LΠ = 0+ symmetry.

In addition to the one-body density matrix, we consider the two-body density matrix ρ12(�r′↑,�r′↓,�r↑,�r↓),

ρ12
(�r′↑,�r′↓,�r↑,�r↓

) =
∫

ψ∗
tot

(�r′↑,�r2, . . . ,�r′↓,�rN1+2, . . . ,�rN
)

× ψtot(�r↑,�r2, . . . ,�r↓,�rN1+2, . . . ,�rN )d3�r2 · · ·d3�rN1 d3�rN1+2 · · ·d3�rN (14)

which is obtained by integrating over all coordinates but the position vectors of one of the spin-up fermions and one of
the spin-down fermions. The two-body density matrix quantifies the non-local correlations between a spin-up atom and
a spin-down atom and thus contains information about the formation of pairs [72,73]. To reduce the dimensionality of
ρ12(�r′↑,�r′↓,�r↑,�r↓), we introduce the relative coordinate vector �r = �r↑ −�r↓ and the center-of-mass vector �R = (�r↑ +�r↓)/2 (and
analogously for the primed coordinates), and rewrite the two-body density matrix in terms of these new coordinate vectors,
i.e., we transform to a new set of coordinates. We then define the reduced two-body density matrix ρred(�R ′, �R) through

ρred
(�R ′, �R) =

∫
ρ12

(
�R ′ + �r

2
, �R ′ − �r

2
, �R + �r

2
, �R − �r

2

)
d3�r (15)

The quantity ρred(�R ′, �R) measures the non-local correlations between spin-up–spin-down pairs that are characterized by the
same relative distance vector �r. However, as defined the reduced two-body density matrix ρred(�R ′, �R) does not distinguish
between “small” and “large” pairs. For sufficiently small as (as > 0), we expect that the system consists of N2 point-like
pairs and N1 − N2 unpaired atoms and that the N2 pairs form a molecular Bose gas. The (3,2) system, e.g., can be thought
of as consisting of two pairs and one fermionic impurity when as is small (as > 0); in this case, the pair fraction should

2 Although the natural orbitals χi(�r) and occupation numbers ni defined through Eq. (7) are characteristic for the spin-up atoms, the subscript “1” has
been suppressed for notational convenience. Similarly, the subscript “1” is suppressed below on the quantities ρlm(r′, r) and χ̃i(�k). To define the one-body
density matrix for the spin-down atoms, which differs from that for the spin-up atoms if N1 − N2 �= 0, one can reorder the particles such that the first
particle is a spin-down atom and apply Eqs. (6)–(12) with “1” replaced by “2”.
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be determined by the non-local correlations of the two composite molecules (as opposed to the non-local correlations of
all N1N2 = 6 possible pairs). Thus, we define the quantity ρ̄red(�R ′, �R), which is obtained from ρred(�R ′, �R) by only including
those �R-vectors that correspond to the position vectors of one of the smallest N2 pairs. In practice, we determine ρ̄red(�R ′, �R)

during the Metropolis walk (see Section 2.3 and Appendix B). While ρred(�R ′, �R) is sampled at each step, ρ̄red(�R ′, �R) is only
sampled if the �R under consideration belongs to that of one of the N2 smallest pairs. We note that a related approach has
been employed in the Monte Carlo treatment of one-dimensional spin-imbalanced Fermi gases [54].

Just as with the one-body density matrix ρ1(�r′,�r), the reduced two-body density matrix ρred(�R ′, �R) can be decomposed
into natural orbitals χqlm(�R). We refer to the corresponding occupation numbers as Nqlm; the capital N is chosen to distin-
guish the occupation numbers associated with ρred(�R ′, �R) from those associated with ρ1(�r′,�r). In analogy to the formalism
outlined above for the one-body density matrix, we define the projections ρlm(R ′, R) and ρ̄lm(R ′, R) of the reduced two-
body density matrix. While the occupation numbers Nqlm obtained by diagonalizing the ρlm(R ′, R) add up, by construction,
to 1, those obtained by diagonalizing the ρ̄lm(R ′, R) do not. This is a direct consequence of the “conditional sampling ap-
proach”. Appendices B and C provide more details about the Monte Carlo sampling and the behavior of ρlm(R ′, R) and
ρ̄lm(R ′, R) in the as → 0+ limit.

In analogy to Eq. (10), the reduced two-body density matrix can be used to obtain the momentum distribution nred( �K );
here, we use �K instead of �k to distinguish the momentum vector associated with the position vector of a pair from that of
an atom. Similarly, we define nred,sp(K ).

3. Results

This section presents our results for small trapped two-component Fermi gases with equal masses. We first present
results for the energies of systems with up to N = 6 particles (see Section 3.1) and then discuss selected local structural
properties (see Section 3.2). Lastly, Section 3.3 discusses our results obtained by analyzing non-local observables.

3.1. Energetics

The energetics of the (2,1) and (2,2) systems have been discussed in detail in the literature. Here, we focus on the (3,2)

and (3,3) systems. While the qualitative behavior of these larger systems is similar to that of the three- and four-particle
systems, the energy spectra of the larger systems is more complex. The increase of the complexity can be traced back to the
increased degeneracies in the limits that as → 0− and as → 0+ . In the weakly-attractive regime (as < 0 and |as|/aho � 1),
the so-called BCS regime, the system behaves like a weakly-attractive atomic Fermi gas (see, e.g., Ref. [64]). In the weakly-
repulsive regime (as > 0 and as/aho � 1), the so-called BEC regime, the system behaves like a weakly-repulsive molecular
Bose gas with N1 − N2 unpaired “fermionic impurities” (see, e.g., Ref. [64]). The degeneracies of the non-interacting atomic
Fermi gas and the molecular Bose gas with fermionic impurities can be obtained by extending the hyperspherical framework
discussed in Ref. [42] for the (2,1) and (2,2) systems to larger systems. Furthermore, the lifting of the degeneracies, i.e., the
slope of each energy level for small |as|, as < 0 and as > 0, can be obtained by applying first order degenerate perturbation
theory using Fermi’s pseudo-potential [22,37,42]. While these limiting behaviors can be obtained fairly straightforwardly,
the behavior of the energy levels in the strongly-correlated regime, i.e., in the regime where |as|/aho � 1, is, in general,
non-trivial. In the following, we highlight selected features of the energy spectra of the (3,2) and (3,3) systems.

Fig. 1 shows the energies of the (3,2) system in the weakly-attractive regime as a function of |as| for the first two
energy manifolds around the non-interacting energies Erel,ni = 9h̄ω and Erel,ni = 10h̄ω. These energy manifolds consist of
a total of 9 and 57 states, respectively (see Table 1). For comparison, the lowest energy manifold of the (2,1) and (2,2)

systems contains only 3 and 9 states, respectively, and the second lowest energy manifold of these systems contains only
9 and 27 states, respectively [42]. The ground state of the (3,2) system has LΠ = 1− symmetry and is 3-fold degenerate
(the degeneracy grel,ni = 3 is due to the spherical symmetry and is associated with the azimuthal quantum number ML ,
ML = −L,−L + 1, . . . , L). The two excited states of the lowest energy manifold [dotted lines in Fig. 1(a)] correspond to un-
natural parity states with 0− and 2− symmetry. For |as|/aho � 1, the perturbative treatment describes the energy spectrum
accurately. As expected, the description worsens as |as|/aho increases. We note that the finite-range effects of the SV ener-
gies are smaller than the symbol size; consequently, the deviations between the SV energies and the perturbative energies
are predominantly due to the approximate nature of the perturbative treatment, which assumes zero-range interactions,
and not due to the fact that Fig. 1 compares energies obtained for finite-range and zero-range interactions. The perturbative
treatment provides a qualitatively correct picture up to |as|/aho ≈ 0.5 (note that Fig. 1 only covers the values |as|/aho � 0.1).
Fig. 1(b) shows the energy levels corresponding to natural parity states of the first excited state energy manifold of the
(3,2) system around Erel,ni = 10h̄ω. For comparison, Fig. 2 exemplarily illustrates for the (3,3) system that the ground state
of spin-balanced systems has 0+ symmetry. Table 2 summarizes the degeneracies and perturbative energy shifts for the two
lowest energy manifolds of the (3,3) system.

Fig. 3 shows selected energy levels for natural parity states of the (3,2) system as a function of a−1
s throughout the

crossover. Dotted, solid, dash-dotted, dash-dot-dotted and dashed lines show the lowest energy level of the L = 0 to 4 states
with natural parity. Fig. 3(a) shows that the L = 1 state has the lowest energy when as is negative [see also Fig. 1(a)].
However, when as is small and positive, the L = 0 state has lower energy. This can be most clearly seen in Fig. 3(b),
which shows the scaled energy Erel − 2Erel,tb, where Erel,tb denotes the relative ground state energy of two trapped atoms
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Fig. 1. (Color online.) Energies Erel of the (3,2) system in the weakly-attractive regime as a function of |as|, as < 0. (a) Energy manifold around Erel,ni = 9h̄ω.
Squares show the SV energies for the state with 1− symmetry while a solid line shows the energies obtained within first order degenerate perturbation
theory. Dotted lines show the perturbative energies for the unnatural parity states with 0− symmetry (upper curve) and 2− symmetry (lower curve with
5-fold degeneracy). (b) Energy manifold around Erel,ni = 10h̄ω. Circles, diamonds and triangles show the SV energies for the states with 0+ symmetry
(two levels with 1-fold degeneracy each), 2+ symmetry (four levels with 5-fold degeneracy each; the upper two curves are nearly degenerate) and 4+
symmetry (one level with 9-fold degeneracy), respectively, while solid lines show the energies obtained within first order degenerate perturbation theory.
The unnatural parity states with 1+ and 3+ symmetry are not shown. The SV calculations are performed for r0 = 0.05aho. The harmonic oscillator energy
Eho is defined as Eho = h̄ω.

Table 1
Dimensionless coefficients c(1) that characterize the weakly-attractive Fermi gas for the (N1, N2) = (3,2) system. The c(1)

are defined through E(1) = c(1)(2π)−1/2h̄ωas/aho, where E(1) denotes the first order perturbative energy shift, i.e., Erel ≈
Erel,ni + E(1) . Erel,ni denotes the relative energy of the non-interacting system and grel,ni the degeneracy, i.e., grel,ni = 2L + 1.

Erel,ni/(h̄ω) grel,ni Lπ c(1)

9 5 2− 13/2

9 3 1− 15/2

9 1 0− 5

10 9 4+ 25/4

10 7 3+ 21/4

10 7 3+ 9/2

10 5 2+ 7.77155

10 5 2+ 6.65010

10 5 2+ 9/2

10 5 2+ 4.45335

10 3 1+ 1
16 (87 + √

209)

10 3 1+ 1
16 (87 − √

209)

10 3 1+ 1
8 (33 + √

89)

10 3 1+ 1
8 (33 − √

89)

10 1 0+ 5
16 (23 + √

17)

10 1 0+ 5
16 (23 − √

17)

that interact through the same two-body potential as the corresponding five-particle system. The subtraction of the energy
of two dimers is motivated by the fact that the fermionic system behaves like a system that consists of N2 diatomic
molecular bosons and N1 − N2 fermions [22,34,37,43]. By subtracting the “internal” two-body binding energy Erel,tb, the
energy crossover curves are mapped to a smaller energy interval which more clearly reveals the key physics. For example, a
significant fraction of the finite-range effects on the positive scattering length side arises due to the formation of pairs and
is removed by subtracting the binding energy of N2 dimers. Fig. 3(b) shows that the crossing between the LΠ = 1− and 0+
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Fig. 2. (Color online.) Lowest energy manifold of the (3,3) system in the weakly-attractive regime as a function of |as|, as < 0. Circles and diamonds
show the SV energies for the natural parity states with 0+ and 2+ symmetry, respectively, while solid lines show the energies calculated using first
order degenerate perturbation theory. In addition, a dotted line shows the perturbative energy for the unnatural parity state with 1+ symmetry. The SV
calculations are performed for r0 = 0.05aho.

Table 2
Dimensionless coefficients c(1) for the Fermi gas with (N1, N2) = (3,3). See the caption of Table 1 for details.

Erel,ni/(h̄ω) grel,ni Lπ c(1)

23/2 5 2+ 19/2

23/2 3 1+ 17/2

23/2 1 0+ 11

25/2 9 4− 33/4

25/2 9 4− 31/4

25/2 7 3− 41/4

25/2 7 3− 1
8 (63 + √

33)

25/2 7 3− 1
8 (63 − √

33)

25/2 5 2− 73/8

25/2 5 2− 9.04636

25/2 5 2− 17/2

25/2 5 2− 8.11599

25/2 5 2− 6.71264

25/2 5 2− 11/2

25/2 3 1− 1
16 (137 + √

609)

25/2 3 1− 9.34613

25/2 3 1− 8.58664

25/2 3 1− 1
16 (137 − √

609)

25/2 3 1− 5.94223

25/2 1 0− 7

25/2 1 0− 25/4

curves occurs at aho/as ≈ 1.5 for the (3,2) system. This is slightly larger than the value at which the crossing occurs for the
(2,1) system, i.e., aho/as ≈ 1 [22,34,35].

We now discuss the infinite scattering length regime, which has received considerable attention for several reasons. On
the one hand, this is the regime where the system is most strongly correlated and where no small parameter exists around
which to expand. On the other hand, the very same aspect that leads to the strong correlations, namely the infinitely large
s-wave scattering length, also leads to a scale invariance of the system [31,32]. In the zero-range limit, the unitary system
is characterized by the same number of length scales as the non-interacting system, which can be shown to imply the
separability of the wave function into a hyperradial part and a hyperangular part [31,32]. This separability has a number of
consequences. One of these is the existence of ladders of energy levels that are separated by 2h̄ω [21,32]. Fig. 4 exemplarily
illustrates for the (3,2) system with LΠ = 0+ symmetry how this 2h̄ω spacing changes as a function of the range r0 of the
two-body interaction potential. Circles show the ground state energy while squares show the energy of the second excited
state, with 2h̄ω subtracted, for various r0. Fig. 4 shows that the finite-range energies approach the zero-range limit linearly
from above. The two-parameter fits, shown by solid lines, nearly coincide at r0 = 0, numerically confirming the expected
2h̄ω spacing with better than 0.1% accuracy. Assuming that a numerically exact treatment gives Erel,gr − Erel,exc = 2h̄ω for
r0 = 0, Fig. 4 can be used to assess the accuracy of the SV energies and the extrapolation scheme. Fig. 5 shows additional
examples for the range dependence of the few-body energies at unitarity.

Table 3 summarizes the extrapolated zero-range energies for N = 4–6. In analyzing our finite range SV energies, we
pursued two approaches: The first approach determines the r0 → 0 energies by fitting a linear curve to the lowest SV
energies for between 2 and 5 different r0 (the results are given by the first entry in the third through fifth column in
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Fig. 3. (Color online.) SV energies for the natural parity states of the (3,2) system with r0 = 0.05aho as a function of a−1
s in the crossover regime. Panel

(a) shows the “bare energy” Erel while panel (b) shows the scaled energy Erel − 2Erel,tb . Dotted, solid, dash-dotted, dash-dot-dotted and dashed lines
correspond to the lowest state with LΠ = 0+ , 1− , 2+ , 3− and 4+ symmetry, respectively. The L = 2–4 curves do not extend all the way to aho/as = 10
since the convergence of the energies on the positive scattering length side becomes more challenging as L increases.

Fig. 4. (Color online.) Energetics of the (3,2) system with LΠ = 0+ at unitarity as a function of r0. Circles show the SV energy Erel (q = 0 on the y-axis
label) for the lowest state with LΠ = 0+ symmetry, while squares show the shifted SV energy Erel − 2h̄ω (q = 1 on the y-axis label) of the second excited
state. Solid lines show a linear fit to the SV energies. The intercepts Erel(r0 = 0) and slopes are 6.4135(7)h̄ω and 2.33(2)h̄ω/r0 for the ground state, and
6.417(1)h̄ω and 2.58(3)h̄ω/r0 for the second excited state, respectively. The numbers in brackets reflect the uncertainty arising from the fit and neglect
the basis set extrapolation error of the SV energies.

Fig. 5. (Color online.) Shifted energies Erel − Erel(r0 = 0) at unitarity as a function of r0. Circles and squares show the shifted energy of the lowest state
of the (3,2) system with LΠ = 0+ and 1− symmetry, respectively, while diamonds show the shifted energy of the lowest state of the (3,3) system with
LΠ = 0+ . Solid lines show linear fits to the SV energies.
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Fig. 6. (Color online.) Circles, squares, diamonds and triangles show the extrapolated zero-range energy Erel(N1, N2) at unitarity as a function of L for the
(2,1), (2,2), (3,2), and (3,3) systems, respectively. For each L, the energy of the energetically lowest lying natural parity state is shown. Dotted lines are
shown to guide the eye. The energies are listed in Table 3.

Table 3
Natural parity zero-range energies Erel(N1, N2), in units of h̄ω, for the two-component equal-mass Fermi gas at unitarity. The energies are obtained by
solving a transcendental equation for N = 3 [33]. For N = 4,5 and 6, the energies are obtained by analyzing the SV energies for finite r0: The first entry
in the third through fifth column is obtained by extrapolating the lowest SV energy for each r0 to the r0 → 0 limit (the results for N = 4 are taken from
Ref. [42]). The second entry in the third through fifth column is obtained by first extrapolating the SV energies to the Nb → ∞ limit for each r0 and by
then extrapolating the resulting energies to the r0 → 0 limit.

LΠ Erel(2,1) Erel(2,2) Erel(3,2) Erel(3,3)

0+ 3.166 3.509/3.509 6.413/6.395 6.858/6.842
1− 2.773 5.598/5.596 5.958/5.955 8.742/8.682
2+ 4.105 4.418/4.418 6.775/6.774 7.855/7.829
3− 4.959 6.176/6.174 7.906/7.898 8.279/8.269
4+ 6.019 6.485/6.484 7.603/7.601 9.569/9.534
5− 6.992 8.245/8.243 8.955/8.945 10.43/10.40
6+ 8.004 8.496/8.496 9.657/9.653 10.36/10.32

Table 3). The second approach first extrapolates the SV energies for each r0 to the infinite basis set limit, i.e., to the
Nb → ∞ limit, and then determines the r0 → 0 energies by fitting the extrapolated SV energies (the results are given
by the second entry in the third through fifth column in Table 3). As can be seen, the energies obtained by the second
approach lie, as expected, below the energies obtained by the first approach. The second entry in the third through fifth
column is our best estimate for the zero-range energy. The errorbars depend on both extrapolations conducted and are
not entirely straightforward to determine reliably. For N = 4 and L > 0, we estimate the uncertainties to be the larger of
0.005h̄ω and the absolute value of the difference of the two entries in column three (for N = 4 and L = 0, the uncertainty
is 0.001h̄ω). For N = 5 (N = 6), we estimate the uncertainties to be the larger of 0.01h̄ω (0.02h̄ω) and the absolute value
of the difference of the two entries in column four (five).

While the range dependence at unitarity varies notably with the symmetry of the system, the energy increases with
increasing r0 for all systems considered in Table 3. In particular, we find that the slopes vary between about 0.08h̄ω/r0 and
about 2.50h̄ω/r0. While the range dependence does, of course, depend on the shape of the two-body potential, we believe
that the range dependence for other short-range model potentials is similar to that found here for the Gaussian interaction
potential. A more detailed discussion of the dependence of the energies on the range of the two-body potential or the
effective range, which characterizes the leading order energy dependence of the two-body s-wave phase shift, can be found
in Refs. [75–77].

Fig. 6 shows the energies of Table 3 graphically. While we were able to interpret the energies of the (2,1) and (2,2)

systems within a simple model (see Ref. [42]), we did not find simple analytical expressions that would predict the energies
of the (3,2) and (3,3) systems at unitarity with a few percent accuracy. The energies summarized in Table 3 are, to the
best of our knowledge, the most extensive and precise estimates of the zero-range energies for systems with N = 5 and 6,
and can be used to assess the accuracy of other numerical approaches. For example, the fixed-node Monte Carlo energies
presented in Refs. [21,22] for a square well potential with range 0.01aho are between 0.1% and 4% higher than the zero-
range energies reported in the first entry of columns three to five of Table 3. We estimate that roughly up to 1% of the
deviations can be attributed to finite-range effects. The remaining discrepancy suggests that the nodal surfaces employed in
the fixed-node Monte Carlo calculations are not perfect.

3.2. Local structural properties

This section characterizes local structural properties of small two-component Fermi gases. As discussed in Section 3.1,
the ground state of spin-imbalanced systems with N1 − N2 = 1 has 1− symmetry in the weakly-attractive regime and 0+
symmetry in the weakly-repulsive regime, while the ground state of spin-balanced systems has 0+ symmetry throughout
the entire crossover. Motivated by this observation, this section focuses on the energetically lowest lying states with LΠ = 0+
and 1− symmetry.
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Fig. 7. (Color online.) Scaled pair distribution function 4π P12,sp(r)r2 for the lowest LΠ = 0+ state of the (2,1) system (dotted lines), the (2,2) system
(dashed lines), the (3,2) system (solid lines) and the (3,3) system (dash-dot-dotted lines) for (a) aho/as = −5, (b) aho/as = 0 and (c) aho/as = 5. The
calculations for the (2,1) and (2,2) systems are performed using r0 = 0.01aho while those for the (3,2) and (3,3) systems are performed using r0 =
0.05aho. The pair distribution functions for the (2,1) and (2,2) systems at unitarity agree with those presented in Ref. [22].

Fig. 7 shows the pair distribution function P12,sp(r) for the (2,1) system (dotted lines), the (2,2) system (dashed lines),
the (3,2) system (solid lines), and the (3,3) system (dash-dot-dotted lines) with 0+ symmetry. Fig. 7(a), (b) and (c) show
the pair distribution functions for aho/as = −5, 0 and 5, respectively. While the overall behavior of the pair distribution
functions for different N but fixed as/aho is similar, small differences exist. For example, for all scattering lengths, the
scaled pair distribution functions of the spin-balanced (2,2) and (3,3) systems take on vanishingly small values at smaller
r than those of the spin-imbalanced (2,1) and (3,2) systems. This behavior is reversed for the LΠ = 1− states (see Fig. 9).
The scaled pair distribution functions P12,sp(r)r2 for aho/as = −5 [Fig. 7(a)] have a small but non-vanishing amplitude for
r values of the order of r0, reflecting the weakly-attractive nature of the two-body interactions. For aho/as = 0 and 5, the
scaled pair distribution functions P12,sp(r)r2 are characterized by two peaks. As discussed in detail in Ref. [22] for the (2,1)

and (2,2) systems, the two-peak structure arises due to the formation of pairs. While both peaks are broad at unitarity
[Fig. 7(b)], the peak at smaller r becomes notably more pronounced as the scattering length becomes positive [Fig. 7(c)].
This can be understood intuitively by realizing that the size of the pairs is, for sufficiently small as (as positive), set by as ,
thereby giving rise to the pronounced peak of P12,sp(r)r2 around r ≈ as . The fact that the scaled pair distribution functions
go to 0 as r → 0 is due to the use of finite-range interaction potentials. If we had used zero-range interactions, the amplitude
of P12,sp(r)r2 would be finite at r = 0.

Fig. 8 shows the radial densities P1,sp(r) and P2,sp(r) for the state with 0+ symmetry at unitarity for the (2,1) system
(dotted lines), the (2,2) system (dashed lines), the (3,2) system (solid lines), and the (3,3) system (dash-dot-dotted lines).
For the spin-balanced systems, P1,sp(r) and P2,sp(r) agree. The peak densities of the (2,1), (2,2) and (3,2) systems are
located at r = 0 while the peak density of the (3,3) system is located at finite r. We interpret the fact that the peak density
is either located at r = 0 or at finite r as the system size changes as a signature of (residual) shell structure. Furthermore,
Fig. 8(a) shows that the peak density of the majority components of the (2,1) and (3,2) systems is smaller than that of the
(2,2) system. The minority components of the spin-imbalanced systems, in contrast, have a higher peak density than the
(2,2) system [see Fig. 8(b)]. In interpreting the densities shown in Fig. 8 it is important to keep in mind that the spherical
components P1,sp(r) and P2,sp(r) are normalized to 1. To “account” for the density of the entire cloud, the densities need
to be multiplied by N1 and N2, respectively.

Fig. 9 shows the scaled pair distribution function P12,sp(r)r2 at unitarity for the lowest state with LΠ = 1− symmetry.
Qualitatively, the behavior of P12,sp(r)r2 for the lowest states with LΠ = 1− (Fig. 9) and 0+ [Fig. 7(b)] at unitarity is similar,
i.e., P12,sp(r)r2 shows a double-peak structure. However, as already alluded to, the scaled pair distribution functions for
the LΠ = 1− state of the spin-imbalanced systems take on vanishingly small values at smaller r values than those of the
spin-balanced systems. For the (2,1) and (3,2) systems, the lowest LΠ = 1− state has a lower energy than the lowest 0+
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Fig. 8. (Color online.) Panels (a) and (b) show the radial densities P1,sp(r) and P2,sp(r), respectively, for the lowest LΠ = 0+ state of the (2,1) system
(dotted lines), the (2,2) system (dashed lines), the (3,2) system (solid lines) and the (3,3) system (dash-dot-dotted lines) at unitarity. The calculations for
the (2,1) and (2,2) systems are performed using r0 = 0.01aho while those for the (3,2) and (3,3) systems are performed using r0 = 0.05aho. The radial
density for the (2,2) system agrees with that presented in Ref. [22] after a proper rescaling.3

Fig. 9. (Color online.) Scaled pair distribution function 4π P12,sp(r)r2 for the lowest LΠ = 1− state of the (2,1) system (dotted line), the (2,2) system
(dashed line), the (3,2) system (solid line) and the (3,3) system (dash-dot-dotted line) for aho/as = 0. The calculations for the (2,1) and (2,2) systems
are performed using r0 = 0.01aho while those for the (3,2) and (3,3) systems are performed using r0 = 0.05aho. The histogram bins of the (3,3) system
are wider than those of the other systems, giving rise to the slightly different slope of P12(r)r2 at small r.

state. Thus, a less extended and more compact pair distribution function for the spin-up–spin-down distance is, at least for
the systems discussed in Figs. 7 and 9, associated with a lower energy.

3.3. Non-local properties

The pair distribution functions and radial densities discussed in the previous section indicate that small two-component
Fermi gases undergo significant changes as the s-wave scattering length as changes from 0− over ∞ to 0+ . In the as →
0+ limit, the basic constituents of the molecular gas are pairs. While the local structural properties provide a great deal
of insight into the formation of pairs, they provide no information as to whether or not the pairs are condensed. The
determination of the molecular condensate fraction is based, as discussed in Section 2.3, on the two-body density matrix
that measures the “response” of the system to moving a pair from one position in the trap to another position in the trap.
The one-body density matrix, in contrast, does not provide a means to quantify the condensate fraction as it measures the
response of the system to moving a fermionic atom from one position in the trap to another position in the trap. In the
following, we analyze both the one-body and the two-body density matrices.

We first consider non-local properties derived from the one-body density matrix. Fig. 10 shows the occupation numbers
nqlm [(qlm) = (000), (100) and (010)] for the ground state with LΠ = 0+ symmetry of the (2,2) system. The behavior is
similar for the (2,1), (3,2) and (3,3) systems (not shown). As as approaches 0− , the numerically obtained occupation num-

3 As a result of a mistake in making the plots, the densities in Fig. 15 of Ref. [22] are by a factor 2 too large. In addition, to compare the densities of
Ref. [22] with those presented here the different normalizations need to be taken into account: The radial densities defined in Ref. [22] are normalized to
the number of spin-up and spin-down atoms as opposed to 1 as done in the present work.
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Fig. 10. (Color online.) Occupation numbers nqlm , obtained by analyzing the one-body density matrix ρ1(�r′,�r), for the lowest state with 0+ symmetry, i.e.,
the ground state, of the (2,2) system as a function of the inverse scattering length a−1

s . Solid, dotted and dashed lines show the occupation numbers n000,
n010 and n100, respectively. The occupation numbers n011 and n01−1 (not shown) are equal to n010. The calculations are performed for r0 = 0.005aho.

Fig. 11. (Color online.) Occupation numbers Nqlm and condensate fraction Ncond, obtained by analyzing the reduced two-body density matrix ρred(�R ′, �R),
for the energetically lowest-lying state with 0+ symmetry as a function of the inverse scattering length a−1

s . (a) Solid, dotted and dashed lines show the
occupation numbers N000, N100, and N010, respectively, for the (2,2) system. The occupation numbers N011 and N01−1 (not shown) are equal to N010.
For comparison, circles, squares and triangles show the occupation number N000 for the (2,1), (3,2) and (3,3) systems, respectively. (b) Circles, the solid
line, squares and triangles show the condensate fraction Ncond, Eq. (17), for the (2,1), (2,2), (3,2) and (3,3) systems. The calculations are performed for
r0 = 0.01aho for the (2,1) system, r0 = 0.005aho for the (2,2) system, and r0 = 0.05aho for the (3,2) and (3,3) systems.

bers agree with the analytical results presented in Appendix C, i.e., n000 = 1/2, n01m = 1/6 (m = 0,±1), and nqlm = 0 for all
other qlm. These occupation numbers directly reflect the anti-symmetric character of the non-interacting fermionic system:
The two spin-up atoms of the (2,2) system have to occupy different single-particle orbitals. One spin-up atom occupies
the lowest harmonic oscillator orbital while the other spin-up atom is equally distributed among the three degenerate first
excited state harmonic oscillator orbitals. Fig. 10 shows that the occupation numbers n000 (solid line) and n010 (dotted line)
of the (2,2) system change only weakly for aho/as � −2.5, i.e., the one-body density matrix ρ1(�r′,�r) can be decomposed
with fairly good accuracy by including just four natural orbitals. In the strongly-interacting regime, n000 and n010 decrease
notably while other occupation numbers such as n100 (dashed line in Fig. 10) increase. In this regime, the system can no
longer be thought of as a weakly-perturbed atomic Fermi gas. For aho/as � 5, we find that a relatively large number of nqlm
take on non-vanishing but small values. Intuitively, this can be understood as follows: An expansion of a tight composite
boson wave function in terms of effective single particle orbitals (the natural orbitals) requires many terms.

Figs. 11 and 12 show results obtained by analyzing the reduced two-body density matrix ρred(�R ′, �R). To aid with the
interpretation of these results, Fig. 13 compares results obtained by analyzing ρred(�R ′, �R) and ρ̄red(�R ′, �R), respectively;
these quantities have been introduced in the last two paragraphs of Section 2.3 to help quantify the molecular condensate
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Fig. 12. (Color online.) Diagonal elements ρ00(R, R), obtained from the reduced two-body density matrix ρred(�R ′, �R), for the lowest state with LΠ = 0+
symmetry of the (2,2) system for aho/as = 0 (dotted line), aho/as = 2.5 (dashed line), aho/as = 5 (dash-dotted line), aho/as = 7.5 (dash-dot-dotted line),
and aho/as = 10 [grey (cyan in the web version) solid line]. The calculations are performed for r0 = 0.005aho. For comparison, the black solid line shows
the quantity ρboson(R, R)/2 [see discussion in the main text and after Eq. (C.16)].

fraction. Fig. 11(a) shows the occupation numbers Nqlm for the lowest state with 0+ symmetry throughout the crossover for
the (2,1), (2,2), (3,2) and (3,3) systems. For the (2,2) system, e.g., N000 (solid line) decreases nearly monotonically from
5/8 in the as → 0− limit to 1/2 in the as → 0+ limit (see Appendix C); in fact, N000 reaches a minimum of about 0.495 at
aho/as ≈ 2.5 and then increases again. While it might be surprising at first sight that the occupation number N000 of the
lowest natural orbital is larger in the absence of pairs (as → 0− limit) than in the presence of pairs (as → 0+ limit), this is
a direct consequence of the definition of ρred(�R ′, �R): N000 is of the order of 1/N1 in both limits (see Appendix C).

The above discussion indicates that N000 does not directly measure the condensate fraction of pairs. Instead, we call the
system condensed when the lowest natural orbital is macroscopically occupied, i.e., when N000 is much larger than all other
Nqlm , (qlm) �= (000). Correspondingly, we introduce the quantity Ncond,

Ncond = 1 − max(
∑l

m=−l Nqlm)

N000
, (ql) �= (00) (16)

The summation over m in the second term on the right-hand side of Eq. (16) is included since we could have defined the
projections [see Eq. (9) for the one-body density matrix; the same argument applies to the two-body density matrix] in
terms of Legendre polynomials that depend on l only instead of in terms of spherical harmonics that depend on l and m.
In the as → 0+ limit, the second term on the right-hand side of Eq. (16) is small and Ncond approaches 1. In the as → 0−
limit, the second term on the right-hand side of Eq. (16) is of the order of 1 for large numbers of particles and Ncond
approaches 0. For small systems, however, Ncond becomes a fraction smaller than 1, i.e., Ncond = 11/17,3/5,0.448,1/3 for
the non-interacting (2,1), (2,2), (3,2) and (3,3) systems, respectively.

In practice, our analysis is limited to a finite number of (lm) projections of the reduced density matrix and Eq. (16)
cannot be evaluated as is. Instead, we employ a slightly modified working definition of the condensate fraction Ncond,

Ncond = 1 − maxq(Nq>0,00,
∑1

m=−1 Nq1m)

N000
(17)

For the systems studied in this paper, Eqs. (16) and (17) give identical or very similar results. Fig. 11(b) illustrates the
behavior of Ncond, Eq. (17), for the lowest LΠ = 0+ state of the (2,1), (2,2), (3,2) and (3,3) systems. Fig. 11(b) shows that
Ncond increases monotonically from a finite value for aho/as = −10 to nearly 1 for aho/as = 10. Although the quantitative
behavior of Ncond depends on the system size, the qualitative behavior is similar for the systems investigated. The conden-
sate fraction Ncond is fairly close to one for aho/as � 5. The condensate fraction of small few-fermion systems [Fig. 11(b)]
exhibits a qualitatively similar behavior to that of the homogeneous system [78]. The main difference is that Ncond for the
trapped system approaches, for the reasons discussed above, a finite value and not a vanishingly small value as as → 0− .

To gain further insight into the correlations associated with the pair formation, Fig. 12 exemplarily shows the diagonal
element ρ00(R, R), obtained by analyzing the two-body density matrix, for the ground state of the (2,2) system for various
scattering lengths. For small scattering lengths (as > 0), i.e., aho/as � 2.5, the diagonal element ρ00(R, R) contains a broad
Gaussian-like background and a sharp shorter-ranged peak. The latter feature becomes narrower with decreasing scattering
length. The peak falls off exponentially and is roughly given by the square of the s-wave pair function Φint(r), Eq. (C.18). The
sharp peak arises from contributions associated with “large pairs” (see also discussion in the context of Fig. 13). Interestingly,
the sharp peak of ρ00(R ′, R) contributes negligibly to the value of N000. This can be readily rationalized by realizing that the
small R ′ and R parts of ρ00(R ′, R) are highly suppressed due to the radial volume element. The broad Gaussian-like peak
is to a fairly good approximation described by ρboson(R, R)/2 (solid line in Fig. 12). The quantity ρboson(R ′, R) is defined
in Appendix C after Eq. (C.16) and denotes the density matrix for a sample of non-interacting molecules of mass 2ma . In
the as → 0+ limit, ρboson(R, R)/2 is expected to provide a good description. The non-diagonal elements [i.e., ρ00(R ′, R) for
R ′ �= R , not shown] show qualitatively similar features as the diagonal elements. We find that the broad background of
ρ00(R ′, R) approaches ρboson(R ′, R)/2 as as approaches the 0+ limit.
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Fig. 13. (Color online.) Analysis of the reduced two-body density matrix for the lowest state with 0+ symmetry, i.e., the ground state, of the (2,2) system.
Dotted, dash-dotted and grey (cyan in the web version) solid lines show the diagonal element ρ00(R, R) obtained by a direct evaluation of the matrix
elements for aho/as = 0, 5 and 10, respectively (these data are also shown in Fig. 12). For comparison, circles show ρ00(R, R) for the same scattering
lengths but calculated by Monte Carlo sampling; the agreement is excellent. Squares, triangles and diamonds show the diagonal element ρ̄00(R, R) for
aho/as = 0, 5 and 10, respectively. The noise visible at small R is a direct consequence of the Monte Carlo sampling approach. For comparison, the black
solid line shows the quantity ρboson(R, R)/2 [see discussion in the main text and after Eq. (C.16)].

Fig. 13 compares the diagonal elements ρ00(R, R) and ρ̄00(R, R) of the (2,2) system for aho/as = 0, 5 and 10, respec-
tively. The quantity ρ̄00(R, R), determined through Metropolis sampling, accounts only for “large” distances between pairs,
thereby reflecting correlations between tightly-bound composite molecules. While the broad peak of ρ00(R, R) nearly coin-
cides with ρ̄00(R, R) for aho/as = 10, the broad peak of ρ00(R, R) has roughly twice as large of an amplitude as ρ̄00(R, R)

for aho/as = 0. The behavior for the non-diagonal elements, not shown, is similar to that of the diagonal elements. This
confirms our interpretation above: The pairs that make up the condensate are those with the smallest interparticle dis-
tances. For aho/as = 0, the (qlm) = (000) orbital is not yet exclusively occupied by the N2 smallest pairs but is occupied
nearly equally by “small” and “large” pairs. For aho/as = 10, the (000) orbital is nearly exclusively occupied by large pairs
and ρ̄00(R ′, R) ≈ ρboson(R ′, R)/2. This is consistent with our finding above that the condensate fraction is notably smaller
than 1 at unitarity. In particular, a value of N000 ≈ 1/N1 at unitary does not signal the condensation of pairs while a value
of N000 ≈ 1/N1 in the as → 0+ limit, provided all other Nqlm are small, does signal the condensation of pairs.

As an alternative to Eq. (16), one could quantify the condensate fraction in terms of the occupation number N̄000 associ-
ated with ρ̄00(R ′, R), i.e., N̄cond = N1 N̄000. While this might be, in certain respects, a more intuitive measure than Eq. (16),
the determination of ρ̄00(R ′, R) and thus N̄000 is, within our framework, computationally significantly more involved than
that of ρ00(R ′, R). Thus, we did not apply this alternative measure.

Lastly, we consider the momentum distribution nred,sp(K ) associated with the center-of-mass vector of spin-up–spin-
down pairs. Fig. 14 shows that nred,sp(K ) consists of two parts, a feature at smaller K (K � 5a−1

ho ) and a feature that extends
to much larger K values. The emergence of these two features with decreasing as is another indication of the condensation
of pairs. The small and large K features become more distinctly separated as as decreases. This is in agreement with the
increase of Ncond with decreasing as . In fact, Fig. 14 suggests that the few-fermion system can be called condensed when the
momentum distribution nred,sp(K ) shows two clearly distinguishable features, i.e., when the derivative of nred,sp(K ) exhibits
a significant change for a small change in K .

In the as → 0+ limit, the momentum distribution nred,sp(K ) for systems with N1 = N2 is well described by the analytical
expression (see Appendix C)

nred,sp(K ) ≈ 1

N1

a3
ho

(2π)3/2
exp

(−(aho K )2/2
) + N1 − 1

N1

a3
ho

π3/2 Kaho
�[−i A exp

(
A2)Erfc(A)

]
(18)

where A = 2aho/as + iKaho and � and Erfc denote the real part and the complementary error function, respectively. The first
term on the right-hand side of Eq. (18) accounts for the small K feature of nred,sp(K ) and represents the momentum dis-
tribution nboson,sp(K )/N1, Eq. (C.17), derived for non-interacting composite bosons of mass 2ma (dark solid lines in Fig. 14).
The second term on the right-hand side of Eq. (18) accounts for the large K feature of nred,sp(K ) and is associated with the
internal structure of the composite bosons. In the large K limit, the second term behaves, as expected, as 1/K 4 [46–48]. The
dependence of the large K part of the momentum distribution on the s-wave scattering length as for systems with N1 = N2
is reproduced quite accurately by Eq. (18). This is illustrated exemplarily for the ground state of the (2,2) system in Fig. 15,
which compares the momentum distribution given by Eq. (18) (thin solid lines) with the numerically determined nred,sp(K )

for aho/as = 2.5–10 [same data as shown in Fig. 14(b)]. For K � r−1
0 (not shown in Fig. 15), the momentum distribution

given in Eq. (18) deviates from that obtained numerically for finite-range interactions. This is expected, since this is the
regime where the details of the two-body interaction potential become relevant. The analytical expression for nred,sp(K ) for
systems with N1 − N2 = 1 and as → 0+ differs from Eq. (18) and is given in Appendix C, Eq. (C.20).
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Fig. 14. (Color online.) Momentum distribution nred,sp(K ) for the lowest state with LΠ = 0+ symmetry for (a) the (2,1) system, (b) the (2,2) system, (c) the
(3,2) system, and (d) the (3,3) system. Dotted, dashed, dash-dotted, dash-dot-dotted and grey (cyan in the web version) solid lines are for aho/as = 0, 2.5,
5, 7.5 and 10, respectively (for N = 5, the largest aho/as considered is 5; for N = 6, results are shown for aho/as = 5 only). For comparison, the dark solid
lines show the quantity nboson,sp(K )/N1, Eq. (C.17) [or first term on the right-hand side of Eq. (18)]. The calculations for the (2,1), (2,2), (3,2) and (3,3)

systems are performed using r0 = 0.01aho, r0 = 0.005aho, r0 = 0.05aho and r0 = 0.05aho, respectively. Note the log-log scale.

Fig. 15. (Color online.) Momentum distribution nred,sp(K ) for the lowest state with LΠ = 0+ symmetry of the (2,2) system. Dashed, dash-dotted, dash-
dot-dotted and grey (cyan in the web version) solid lines are for aho/as = 2.5, 5, 7.5 and 10, respectively [these data are also shown in Fig. 14(b)]. For
comparison, the thin solid lines show the analytically predicted momentum distribution nred,sp(K ), Eq. (18). Note the log–log scale.

4. Conclusions

This paper considers small two-component Fermi gases under external spherically symmetric confinement. We have
treated systems with up to N = 6 atoms, where N1 − N2 = 0 or 1, within a microscopic, non-perturbative zero-temperature
framework. Using the stochastic variational approach, we have investigated the energetics and structural properties as func-
tions of the s-wave scattering length as and the symmetry of the system. In certain cases, we have also examined the
dependence of the results on the range r0 of the underlying two-body model potential.
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Our analysis of the energetics and the structural properties extends previous studies and adds to the rapidly growing
body of results for small trapped three-dimensional few-fermion systems. In particular, we have presented extrapolated
zero-range energies for the natural parity states of the five- and six-particle systems at unitarity for various angular mo-
menta. These energies are expected to serve as benchmarks for other numerical approaches.

We have also presented a detailed study of the non-local properties of few-fermion systems. One of our goals has been to
quantify the molecular condensate fraction of trapped two-component Fermi systems on the positive scattering length side.
To this end, we have analyzed the one-body and the two-body density matrices and proposed to use the quantity Ncond as
a measure of the molecular condensate fraction. We showed that the momentum distribution nred,sp(K ), an experimentally
accessible observable, develops two clearly distinguishable features at s-wave scattering lengths as for which the molecular
condensate fraction Ncond takes on values close to 1.

The determination of the molecular condensate fraction of the trapped system is more complicated than that of the
homogeneous Fermi system since the trap “cuts off” the asymptotic behavior that is typically analyzed to determine the
molecular condensate fraction of the homogeneous system (see, e.g., Ref. [78] for a cold-atom study). Instead, the analysis
of finite-sized systems proceeds through the diagonalization of the two-body density matrix. The diagonalization results in
a set of natural orbitals and occupation numbers that can then be used to quantify the molecular condensate fraction. In
our approach, we measured the position vectors of the composite pairs with respect to the trap center. Alternatively, one
might imagine measuring the position vectors with respect to the center of mass of the trapped system. In the context of
bosonic systems, implications of defining the one-body density matrix in terms of different “reference coordinates” have
been discussed in the literature [51,79–81]. Future work needs to address how the results obtained by analyzing the two-
body density matrix of fermionic few-body systems depend on the use of different reference coordinates.

Acknowledgements

We thank D. Rakshit for checking the equations presented in Appendix A. Support by the NSF through grant PHY-0855332
and the ARO are gratefully acknowledged.

Appendix A. Matrix elements employed in stochastic variational approach

While explicit expressions for the Hamiltonian and overlap matrix elements are available in the literature [67], explicit
expressions for the non-local observables that we are interested in are not. Thus, this appendix outlines the derivation of
selected matrix elements used in our SV calculations; our derivations follow the general approach outlined in Ref. [67].

In our implementation, we construct the basis set by treating the relative Jacobi vectors �ρ1, . . . , �ρN−1 only. The structural
properties, however, are determined by multiplying the optimized basis set by the unnormalized ground state center-of-mass
wave function ψcm(�Rcm) [Eq. (3) with Ncm = 1]. The unsymmetrized (and unnormalized) basis functions φA that include
the center-of-mass degrees of freedom and describe states with LΠ = 0+ symmetry read

φA(�x) = exp

(
−1

2
�xT A�x

)
(A.1)

where �x collectively denotes the N Jacobi vectors, �x = ( �ρ1, . . . , �ρN−1, �Rcm). Here, A is a symmetric and positive definite
matrix that is written in terms of (N − 1)(N − 2)/2 variational parameters [the (A) jk with j = 1, . . . , N − 1 and k � j are
optimized semi-stochastically]. To ensure that the center-of-mass degrees of freedom are in the ground state, the matrix
elements (A) jN and (A)N j , where j = 1, . . . , N − 1 are set to zero and the matrix element (A)N N is set to N/a2

ho. The Jacobi
vectors �x and the single particle coordinates �y = (�r1, . . . ,�rN ) are related through the N × N matrix U ,

�x = U �y (A.2)

Our first goal is to determine the matrix element (ρ1(�r′,�r))A′ A = 〈φA′ |ρ1|φA〉/〈φA′ |φA〉,

(
ρ1

(�r′,�r))A′ A = (O A′ A)−1
∫ [∫

δ
(�r′ − �r1

)
φA′(�x)d3�r1

][∫
δ(�r −�r1)φA(�x)d3�r1

]
d3N−3 �yred (A.3)

where �yred = (�r2, . . . ,�rN) and

O A′ A =
(

(2π)N

det(A′ + A)

)3/2

(A.4)

It is convenient [67] to rewrite the right-hand side of Eq. (A.3) in terms of the function g(�s; A, �x),

g(�s; A, �x) = exp

(
−1

2
�xT A�x + �sT �x

)
(A.5)

where �s denotes a vector that has the same dimensionality as �x. The unsymmetrized basis functions can then be written
as φA(�x) = g(0; A, �x). Using that �xT A�x = �yT U T AU �y, we rewrite the unsymmetrized basis functions φA in terms of �y and
separate off the �r1 dependence,
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φA(�y) = g(0; B, �yred)exp

(
−1

2
b1�r2

1 − (�bT �yred
)T �r1

)
(A.6)

Here, the scalar b1 is given by (U T AU )11, the (N − 1)-dimensional vector �b is given by ((U T AU )12, . . . , (U T AU )1N ), and the
(N −1)× (N −1)-dimensional matrix B is given by U T AU with the first row and column removed. In Eq. (A.6), the quantity
(�bT �yred)T �r1 equals

∑N
j=2(

�b) j−1 �yT
j �r1, where (�b) j denotes the jth element of the vector �b. To evaluate the right-hand side of

Eq. (A.3), we define b′
1, �b′ and B ′ analogously to b1, �b and B . This yields

(
ρ1

(�r′,�r))A′ A = (O A′ A)−1
∫

g
(
0; B ′, �yred

)
g(0; B, �yred)exp

(
−1

2
b′

1�r′2 − (�b′ T �yred
)T �r′

)

× exp

(
−1

2
b1�r2 − (�bT �yred

)T �r
)

d3N−3 �yred (A.7)

which can be rewritten as

(
ρ1

(�r′,�r))A′ A = (O A′ A)−1
∫

exp

(
−1

2

(
b′

1�r′2 + b1�r2))g
(−(�b′�r′ + �b�r); B ′ + B, �yred

)
d3N−3 �yred (A.8)

Here, the quantity �b�r is a (N − 1)-dimensional vector with elements (�b) j�r, where j = 1, . . . , N − 1. Using the first entry of
Table 7.1 of Ref. [67],∫

g(�s; A, �x)d3N�x =
(

(2π)N

det A

)3/2

exp

(
1

2
�sT A−1�s

)
(A.9)

we find a compact expression for the matrix elements of the one-body density matrix,

(
ρ1

(�r′,�r))A′ A = (O A′ A)−1c1 exp

(
−c′

2
�r′2 − c

2
�r2 + a

2
�r′ T �r

)
(A.10)

where

c1 =
(

(2π)N−1

det(B ′ + B)

)3/2

(A.11)

c′ = b′
1 − �b′ T C�b′ (A.12)

c = b1 − �bT C�b (A.13)

a = �b′ T C�b + �bT C�b′ (A.14)

and

C = (
B ′ + B

)−1
(A.15)

We now use Eq. (A.10) to determine an analytical expression for the matrix element (ρ00(r′, r))A′ A . To this end, we write
�r′ T �r = r′r cosγ , where γ denotes the angle between �r′ and �r. The integration over θ , ϕ , θ ′ and ϕ′ then reduces to a single
integration over γ (the other integrations give a factor of 8π2). Performing the integration over γ yields

(
ρ00

(
r′, r

))
A′ A = (O A′ A)−1 2c1

ar′r
exp

[
−1

2

(
c′r′2 + cr2)] sinh

(
arr′

2

)
(A.16)

The matrix elements for higher partial wave projections can be determined in a similar manner.
Our next goal is to determine an analytical expression for the matrix element (n1,sp(k))A′ A . Using Eqs. (10) and (A.10),

we write

(
n1(�k)

)
A′ A = (O A′ A)−1 c1

(2π)3

∫
exp

[
−1

2

(
c′r′2 + cr2 − a�r′ T �r)]exp

[
i�kT (�r′ − �r)] d3�r′ d3�r (A.17)

Defining �X = �r′ − �r, Eq. (A.17) becomes

(
n1(�k)

)
A′ A = (O A′ A)−1 c1

(2π)3

∫
exp

(
− f

2
r2 − c′

2
X2 + g

2
�X T �r

)
exp

(
i�kT �X)

d3�r d3 �X (A.18)

where f = c′ + c − a and g = a − 2c′ . Next, we expand the quantity exp(i�kT �X),

exp
(
i�kT �X) =

∞∑
(2l + 1)il jl(kX)Pl

(
cosγ ′) (A.19)
l=0
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where γ ′ denotes the angle between �k and �X . Considering the l = 0 component only, we find

(
n1,sp(k)

)
A′ A = (O A′ A)−1 c1

π

∞∫
0

∞∫
0

1∫
−1

exp

(
− f

2
r2 − c′

2
X2 + g

2
Xr cosγ

)
sin(kX)

kX
r2 X2 d cosγ dr dX (A.20)

where γ denotes the angle between �r and �X . The integration over cosγ gives

(
n1,sp(k)

)
A′ A = (O A′ A)−1 4c1

π gk

∞∫
0

∞∫
0

exp

(
− f

2
r2 − c′

2
X2

)
sinh

(
gr X

2

)
sin(kX)r dr dX (A.21)

If f > 0, the integration over r can also be performed analytically,

(
n1,sp(k)

)
A′ A = (O A′ A)−1

√
2c1√

π f 3/2k

∞∫
0

exp

(
−d

2
X2

)
sin(kX)X dX (A.22)

where d is given by

d = c′ − g2

4 f
(A.23)

Lastly, the integration over X gives for d > 0,

(
n1,sp(k)

)
A′ A = (O A′ A)−1 c1

(df )3/2
exp

(
− k2

2d

)
(A.24)

We have checked numerically that f and d are, indeed, greater than 0.
With one minor change, the derivation outlined above for the matrix elements of the one-body density matrix ρ1(�r′,�r)

also applies to the matrix elements of the reduced two-body density matrix ρred(�R ′, �R). In particular, the single-particle
coordinate vector �y needs to be replaced by (�R,�r,�r2, . . . ,�rN1 ,�rN1+2, . . . ,�rN) and the matrix U needs to be redefined accord-
ingly. The derivation of the matrix elements for the quantities ρ00(R ′, R) and nred,sp(K ) then carries over without additional
changes.

Appendix B. Monte Carlo sampling of density matrix and momentum distribution

This appendix discusses the determination of various observables through the Monte Carlo sampling of the wave func-
tion ψtot. Although our approach follows standard procedures [49,69,74], we find it useful to summarize a few key results
in this appendix for completeness.

Throughout this appendix, we assume that ψtot is known but not necessarily normalized. We use a Metropolis walk to
generate a set of configurations (�r1, j, . . . ,�rN, j), where j = 1, . . . , Nsample, that are distributed according to the probability
distribution P (�r1, . . . ,�rN ),

P (�r1, . . . ,�rN ) = |ψtot(�r1, . . . ,�rN )|2∫ |ψtot(�r1, . . . ,�rN)|2 d3�r1 · · · d3�rN
(B.1)

Quite generally, the strategy is to express the expectation value of the observable A in terms of P (�r1, . . . ,�rN ) and an
“auxiliary function” A′ ,

〈A〉 =
∫

P (�r1, . . . ,�rN)A′(�r1, . . . ,�rN)d3�r1 · · · d3�rN (B.2)

and to then average the quantity A′ over the configurations generated by the Metropolis walk,

〈A〉 = 1

Nsample

Nsample∑
j=1

A′(�r1, j, . . . ,�rN, j) (B.3)

The functional form of the auxiliary function A′ depends on the observable A of interest. In general, A′ can depend on one
or more of the coordinate vectors �ri , where i = 1, . . . , N . As an example, we consider the radial density P1,sp(r), Eq. (5),
which can be rewritten as

P1,sp(r) =
∫

P (�r1, . . . ,�rN)
δ(r − r1)

4πr2
d3�r1 · · ·d3�rN (B.4)
1
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We thus have A′ = A′(r, r1) = δ(r − r1)/(4πr2
1).

We apply an analogous strategy to calculate the non-local observables ρ00(r′, r) and n1,sp(k). The projected one-body
density matrix ρ00(r′, r), Eq. (9), can be rewritten as

ρ00
(
r′, r

) =
∫

P (�r1, . . . ,�rN)
1

4π

ψ∗
tot(�r′,�r2, . . . ,�rN)

ψ∗
tot(�r1,�r2, . . . ,�rN)

δ(r − r1)

4πr2
1

d2Ωr′ d3�r1 · · · d3�rN (B.5)

Comparison with Eq. (B.2) shows that the auxiliary function A′ now contains an integration over r̂′ . This integration is
performed by generating a unit vector r̂′ with random direction for each configuration (�r1, j, . . . ,�rN, j). The random unit
vector is then scaled to the desired length r′—in our calculations we employ a linear grid—and the (r′, r) bin of the ρ00
histogram is increased by ψ∗

tot(�r′,�r2, . . . ,�rN )/[ψ∗
tot(�r1,�r2, . . . ,�rN )16π2r2

1]. At the end of the sampling, we symmetrize the
projected one-body density matrix.

The Metropolis sampling of the spherical component n1,sp(k) of the momentum distribution proceeds similarly to that
of ρ00(r′, r). In particular, we rewrite Eq. (13),

n1,sp(k) = 1

(2π)3

∫
P (�r1, . . . ,�rN)

ψ∗
tot(�r1 + �X,�r2, . . . ,�rN )

ψ∗
tot(�r1,�r2, . . . ,�rN)

sin(kX)

kX
d3 �X d3�r1 · · ·d3�rN (B.6)

The integration over �X is performed in two steps. The angular integrations are performed, as discussed above for ρ00(r′, r),
by generating a unit vector X̂ with random direction for each configuration (�r1, j, . . . ,�rN, j). The radial integration, in turn, is
performed by defining a linear grid in X and by employing the trapezoidal rule.

The Monte Carlo sampling of the quantities ρ00(R ′, R) and nred,sp(K ) proceeds analogously: ρ00(R ′, R) and nred,sp(K ) are
rewritten as

ρ00
(

R ′, R
) =

∫
P (�r1, . . . ,�rN)

1

4π

ψ∗
tot(

�R ′ + 1
2�r1 − 1

2�r2, �R ′ − 1
2�r1 + 1

2�r2,�r3, . . . ,�rN)

ψ∗
tot(�r1,�r2, . . . ,�rN)

× δ(R − |�r1+�r2
2 |)

π |�r1 +�r2|2 d2ΩR ′ d3�r1 · · · d3�rN (B.7)

and

nred,sp(K ) = 1

(2π)3

∫
P (�r1, . . . ,�rN)

ψ∗
tot(�r1 + �X,�r2 + �X,�r3, . . . ,�rN)

ψ∗
tot(�r1,�r2, . . . ,�rN)

sin(K X)

K X
d3 �X d3�r1 · · ·d3�rN (B.8)

and the integrations over R̂ and �X are performed as discussed above.

Appendix C. Analytical expressions for the non-interacting and weakly-interacting limits

This appendix summarizes analytical expressions for the non-interacting and weakly-interacting limits. These results are
useful for two reasons. First, they aid—as illustrated in Section 3—with the interpretation of the results for the interacting
systems. Second, we have used these analytical results to check our numerical implementations.

We start with the as → 0− limit and present explicit analytical expressions for the one-body density matrix ρ1(�r′,�r)
and the reduced two-body density matrix ρred(�R ′, �R), as well as for quantities derived from ρ1(�r′,�r) and ρred(�R ′, �R). To
illustrate the behavior of these quantities, we consider the ground state of the (2,2) system as an example; other states
and other systems can be treated similarly. The ground state wave function of the non-interacting (2,2) atomic Fermi gas
has LΠ = 0+ symmetry,

ψtot(�r1,�r2,�r3,�r4) = 1

31/2π3a8
ho

exp

(
−

4∑
j=1

�r2
j

2a2
ho

)
(�r1 −�r2)

T (�r3 −�r4) (C.1)

The spin-up and spin-down atoms both experience (identical) non-trivial correlations due to the anti-symmetrization. Ap-
plying the definitions of Section 2.3, we find

ρ1
(�r′,�r) = 3 + 2�r′ T �r/a2

ho

6π3/2a3
ho

exp

(
−�r′2 +�r2

2a2
ho

)
(C.2)

ρ00
(
r′, r

) = 1

2π3/2a3
ho

exp

(
−�r′2 +�r2

2a2
ho

)
(C.3)

and

ρ10
(
r′, r

) = ρ1−1
(
r′, r

) = ρ11
(
r′, r

) = r′r
9π3/2a5

exp

(
−�r′2 +�r2

2a2

)
(C.4)
ho ho
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Higher partial wave projections vanish, i.e., ρlm(r′, r) = 0 for l > 1. Diagonalizing the projected one-body density matrices
ρlm(r′, r) allows for the determination of the natural orbitals and occupation numbers. Inspection of Eqs. (C.2)–(C.4) shows
that the one-body density matrix can be decomposed into four natural orbitals,

χ000(�r) = 1

π3/4a3/2
ho

exp

(
− �r2

2a2
ho

)
(C.5)

χ010(�r) =
√

2z

π3/4a5/2
ho

exp

(
− �r2

2a2
ho

)
(C.6)

and similarly for the (l,m) = (1,−1) and (1,1) components. The corresponding occupation numbers are n000 = 1/2 and
n010 = n01−1 = n011 = 1/6, i.e., on average one of the spin-up atoms occupies a (l,m) = (0,0) orbital while the second spin-
up atom occupies a combination of three l = 1 orbitals. For completeness, we also report the expression for the spherical
component n1,sp(k) of the momentum distribution,

n1,sp(k) = 3a3
ho + 2a5

hok2

6π3/2
exp

(−a2
hok2) (C.7)

Similarly, we analyze the reduced two-body density matrix ρred(�R ′, �R). We find

ρred
(�R ′, �R) = 39 − 12(R ′2 + R2)/a2

ho + 16R ′2 R2/a4
ho + 16�R ′ T �R/a2

ho

12
√

2π3/2a3
ho

exp

(
− �R ′2 + �R2

a2
ho

)
(C.8)

ρ00
(

R ′, R
) = 39 − 12(R ′2 + R2)/a2

ho + 16R ′2 R2/a4
ho

12
√

2π3/2a3
ho

exp

(
− �R ′2 + �R2

a2
ho

)
(C.9)

and

ρ10
(

R ′, R
) = ρ1−1

(
R ′, R

) = ρ11
(

R ′, R
) = 23/2 R ′R

9π3/2a5
ho

exp

(
− �R ′2 + �R2

a2
ho

)
(C.10)

Higher partial wave projections vanish, i.e., ρlm(R ′, R) = 0 for l > 1. Diagonalizing the projected reduced two-body density
matrices ρlm(R ′, R) allows for the determination of the natural orbitals and occupation numbers. Inspection of Eqs. (C.8)–
(C.10) shows that the reduced two-body density matrix can be decomposed into five natural orbitals,

χ000(�R) = 23/4

π3/4a3/2
ho

exp

(
− �R2

a2
ho

)
(C.11)

χ100(�R) = 25/4(3 − 4R2/a2
ho)

121/2π3/4a3/2
ho

exp

(
− �R2

a2
ho

)
(C.12)

χ010(�R) = 27/4 Z

π3/4a5/2
ho

exp

(
− �R2

a2
ho

)
(C.13)

and similarly for the (l,m) = (1,−1) and (1,1) components. The corresponding occupation numbers are N000 = 5/8,
N100 = 1/8 and N010 = N01−1 = N011 = 1/12. For completeness, we also report the expression for the spherical compo-
nent nred,sp(K ) of the momentum distribution,

nred,sp(K ) = 39a3
ho − 2a5

ho K 2 + a7
ho K 4

96
√

2π3/2
exp

(
−a2

ho K 2

2

)
(C.14)

Figs. 10 and 11 in Section 3.3 show the occupation numbers derived from the one-body and reduced two-body density
matrices for the (2,2) system as a function of a−1

s . In the as → 0− limit, the results for the interacting system approach the
analytical expressions presented here.

Next, we consider the as → 0+ limit. Assuming that the spin-balanced Fermi system can be described as consisting of
N/2 point bosons of mass M , where M = 2ma , the wave function ψtot becomes

ψtot(�R1, . . . , �RN/2) =
N/2∏
j=1

Φboson(�R j) (C.15)

where �R j denotes the position vector of the point boson and Φboson(�R j) is the ground state harmonic oscillator orbital,
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Φboson(�R) = 1

π3/4a3/2
ho,M

exp

(
− �R2

2a2
ho,M

)
(C.16)

and aho,M = √
h̄/(Mω). For this system, one readily finds ρboson(�R ′, �R) = ρboson,sp(R ′, R) = Φ∗

boson(�R ′)Φboson(�R), Nboson
000 = 1,

χboson
000 (�R) = Φboson(�R), and

nboson( �K ) = nboson,sp(K ) = a3
ho,M

π3/2
exp

(−(aho,M K )2) (C.17)

In the as → 0+ limit, the reduced two-body density matrix ρ̄red(�R ′, �R) is expected to approach ρboson(�R ′, �R)/N1. The factor
of 1/N1 arises as follows: The fermionic system contains N1 × N2 spin-up–spin-down distances. For any given configuration,
however, only N2 of these distances correspond to a relative distance vector of a tightly bound pair in the as → 0+ limit.
Thus, ρred(�R ′, �R) can be decomposed in the as → 0+ limit into two pieces: The first piece, ρ̄red(�R ′, �R), accounts for the N2
pairs that are condensed. The second piece, ρred(�R ′, �R) − ρ̄red(�R ′, �R), accounts for the N2(N1 − 1) pair distances that belong
to large pairs. Applying this reasoning, we expect that the “second piece” gives rise to the occupation of a large number
of natural orbitals, all with small occupation numbers, while the “first piece” gives rise to the macroscopic occupation of a
single (l,m) = (0,0) natural orbital [i.e., for the lowest natural orbital of ρ̄red(�R, �R ′), we expect N000 = 1/2,1/2,1/3 and 1/3
for the (2,1), (2,2), (3,2) and (3,3) systems, respectively]. In summary, we expect ρ̄red(�R ′, �R) = ρ̄00(R ′, R) = ρ00(R ′, R) =
ρboson(R ′, R)/N1 in the as → 0+ limit. This is confirmed by our numerical calculations.

As discussed in Section 2.3, we determine the ρ̄lm(R ′, R) through Metropolis sampling. While this approach works in
principle, observables determined through this Monte Carlo approach are necessarily accompanied by statistical errors;
the reduction of these statistical errors for non-local observables is possible but does, in general, require significant com-
putational resources. In contrast, the ρlm(R ′, R) can, in most cases, be determined quite efficiently within the stochastic
variational framework (see Appendix A). As shown in Section 3.3, the quantity ρ00(R ′, R) contains valuable information.

To interpret the characteristics of ρ00(R ′, R) for finite but small as , it is useful to consider the internal structure of the
composite bosons, which can be described approximately by assuming that the spin-up and spin-down fermions interact
through a δ-function potential. In the limit of small as , the confining potential can be neglected and the internal wave
function Φint(�r j) of the jth tightly bound pair becomes

Φint(�r j) = 1√
2asπ |�r j|

exp

(
−|�r j|

as

)
(C.18)

where �r j denotes the distance vector between the spin-up atom and the spin-down atom that form the jth composite
boson. Eq. (C.18) is used to interpret the peak of ρ00(R ′, R) that exists at length scales of the order of as (see Fig. 12).

Lastly, we determine the large K contribution to the momentum distribution nred,sp(K ) that depends, as discussed in
Section 3.3 in the context of Figs. 14 and 15, on the internal structure of the molecules. If N is even, we multiply the wave
function given in Eq. (C.15) by N/2 pair functions, i.e., by

∏N/2
j=1 Φint(�r j) [see Eq. (C.18)]. To calculate the large K contribution

to nred,sp(K ), we choose the �R and �R ′ vectors that enter into ρred(�R, �R ′) to belong to spin-up–spin-down pairs that have
relatively large interparticle distances. For example, if particles 1 and N/2 + 1 form a pair and particles 2 and N/2 + 2 form
a pair, then we choose �R = (�r1 + �rN/2+2)/2 and �R ′ = (�r2 + �rN/2+1)/2. Evaluating ρred(�R, �R ′), and in turn nred,sp(K ), for this
choice of coordinates and the approximate analytical wave function, we find

nmodel,sp(K ) = a3
ho

π3/2 Kaho
�[−i A exp

(
A2)Erfc(A)

]
(C.19)

where A = 2aho/as + iKaho, for the contribution to nred,sp(K ) for “large pairs”. Combining Eqs. (C.17) and (C.19) and taking
into account that systems with N1 = N2 contain, as as approaches the 0+ limit, N2 small and N1N2 − N2 large pairs, we
obtain Eq. (18) of Section 3.3.

For systems with N1 − N2 = 1, the unpaired impurity atom has to be taken into account. Multiplying the wave function
constructed for the fully paired system, i.e., for N1 = N2, by a single particle ground state harmonic oscillator wave function
for the spare particle and defining the �R and �R ′ vectors in terms of the coordinates of the impurity atom and those of one
of the spin-down atoms, we obtain a third contribution to the momentum distribution nred,sp(K ) in the as → 0+ limit,

nred,sp(K ) ≈ 1

N1
nboson,sp(K ) + (N1N2 − 2N2)

N1N2
nmodel,sp(K ) + 1

N1

2a3
ho

5π3/2 Kaho
�[−iB exp

(
B2)Erfc(B)

]
(C.20)

where B = √
2/5(aho/as + iKaho). We have checked that Eq. (C.20) reproduces the numerically determined momentum

distributions nred,sp(K ) for the (2,1) and (3,2) systems with small as , as > 0, well for K � r−1
0 .
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