662 research outputs found

    Charge diffusion and the butterfly effect in striped holographic matter

    Full text link
    Recently, it has been proposed that the butterfly velocity - a speed at which quantum information propagates - may provide a fundamental bound on diffusion constants in dirty incoherent metals. We analytically compute the charge diffusion constant and the butterfly velocity in charge-neutral holographic matter with long wavelength "hydrodynamic" disorder in a single spatial direction. In this limit, we find that the butterfly velocity does not set a sharp lower bound for the charge diffusion constant.Comment: 16+7 pages; 1 figure. v2: published versio

    Tunneling in graphene-topological insulator hybrid devices

    Get PDF
    Hybrid graphene-topological insulator (TI) devices were fabricated using a mechanical transfer method and studied via electronic transport. Devices consisting of bilayer graphene (BLG) under the TI Bi2_2Se3_3 exhibit differential conductance characteristics which appear to be dominated by tunneling, roughly reproducing the Bi2_2Se3_3 density of states. Similar results were obtained for BLG on top of Bi2_2Se3_3, with 10-fold greater conductance consistent with a larger contact area due to better surface conformity. The devices further show evidence of inelastic phonon-assisted tunneling processes involving both Bi2_2Se3_3 and graphene phonons. These processes favor phonons which compensate for momentum mismatch between the TI Γ\Gamma and graphene K,KK, K' points. Finally, the utility of these tunnel junctions is demonstrated on a density-tunable BLG device, where the charge-neutrality point is traced along the energy-density trajectory. This trajectory is used as a measure of the ground-state density of states

    A unified approach on Springer fibers in the hook, two-row and two-column cases

    Full text link
    We consider the Springer fiber over a nilpotent endomorphism. Fix a Jordan basis and consider the standard torus relative to this. We deal with the problem to describe the flags fixed by the torus which belong to a given component of the Springer fiber. We solve the problem in the hook, two-row and two-column cases. We provide two main characterizations which are common to the three cases, and which involve dominance relations between Young diagrams and combinatorial algorithms. Then, for these three cases, we deduce topological properties of the components and their intersections.Comment: 42 page

    Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung

    Get PDF
    Phagocytes not only coordinate acute inflammation and host defense at mucosal sites, but also contribute to tissue damage. Respiratory infection causes a globally significant disease burden and frequently progresses to acute respiratory distress syndrome, a devastating inflammatory condition characterized by neutrophil recruitment and accumulation of protein-rich edema fluid causing impaired lung function. We hypothesized that targeting the intracellular protein myeloid cell leukemia 1 (Mcl-1) by a cyclin-dependent kinase inhibitor (AT7519) or a flavone (wogonin) would accelerate neutrophil apoptosis and resolution of established inflammation, but without detriment to bacterial clearance. Mcl-1 loss induced human neutrophil apoptosis, but did not induce macrophage apoptosis nor impair phagocytosis of apoptotic neutrophils. Neutrophil-dominant inflammation was modelled in mice by either endotoxin or bacteria (Escherichia coli). Downregulating inflammatory cell Mcl-1 had anti-inflammatory, pro-resolution effects, shortening the resolution interval (R(i)) from 19 to 7 h and improved organ dysfunction with enhanced alveolar–capillary barrier integrity. Conversely, attenuating drug-induced Mcl-1 downregulation inhibited neutrophil apoptosis and delayed resolution of endotoxin-mediated lung inflammation. Importantly, manipulating lung inflammatory cell Mcl-1 also accelerated resolution of bacterial infection (R(i); 50 to 16 h) concurrent with enhanced bacterial clearance. Therefore, manipulating inflammatory cell Mcl-1 accelerates inflammation resolution without detriment to host defense against bacteria, and represents a target for treating infection-associated inflammation

    Odontogenic Abscesses in Rhesus Macaques \u3ci\u3e(Macaca mulatta)\u3c/i\u3e of Cayo Santiago

    Get PDF
    Objectives Odontogenic abscesses are one of the most common dental diseases causing maxillofacial skeletal lesions. They affect the individual\u27s ability to maintain the dental structures necessary to obtain adequate nutrition for survival and reproduction. In this study, the prevalence and pattern of odontogenic abscesses in relation to age, sex, matriline, and living periods were investigated in adult rhesus macaque skeletons of the free-ranging colony on Cayo Santiago, Puerto Rico. Materials and MethodsThe skulls used for this study were from the skeletons of 752 adult rhesus macaques, aged 8–31 years, and born between 1951 and 2000. They came from 66 matrilines ranging from 1 to 88 individuals. Fistulae or skeletal lesions caused by odontogenic abscesses drainage, carious lesions, tooth fractures, tooth loss, and alveolar resorption were evaluated visually. Results Seventy-two specimens (9.57%) had odontogenic abscesses of varying severity. Males had a significantly higher prevalence than females. The prevalence of odontogenic abscesses in several matrilines was significantly higher than in the population as a whole. Animals born between 1950 and 1965 tended to have a higher prevalence of odontogenic abscesses than those born in later periods. Discussion These results suggest that oral pathologies, such as dental and periodontal abscesses in rhesus macaques are fairly common, which may indicate familial effects interwoven with ecological and social factors. The closeness of the rhesus and human genomes allows insights to understand of the epidemiology of these diseases in the human population. Further assessment of the role played by environmental and familial factors on rhesus oral health and disease are warranted

    Unified time analysis of photon and (nonrelativistic) particle Tunnelling, and the Superluminal group-velocity problem

    Get PDF
    A unified approach to the time analysis of tunnelling of nonrelativistic particles is presented, in which Time is regarded as a quantum-mechanical observable, canonically conjugated to Energy. The validity of the Hartman effect (independence of the Tunnelling Time of the opaque barrier width, with Superluminal group velocities as a consequence) is verified for ALL the known expressions of the mean tunnelling time. Moreover, the analogy between particle and photon tunnelling is suitably exploited. On the basis of such an analogy, an explanation of some recent microwave and optics experimental results on tunnelling times is proposed. Attention is devoted to some aspects of the causality problem for particle and photon tunnelling.Comment: plain (old) LaTeX; 42 pages; plus figures 1, 2, 3, 4a, 4b, and

    Quantitative Assessment of Mammary Gland Density in Rodents Using Digital Image Analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rodent models have been used extensively to study mammary gland development and for studies of toxicology and carcinogenesis. Mammary gland gross morphology can visualized via the excision of intact mammary gland chains following fixation and staining with carmine using a tissue preparation referred to as a whole mount. Methods are described for the automated collection of digital images from an entire mammary gland whole mount and for the interrogation of digital data using a "masking" technique available with Image-Pro<sup>® </sup>plus image analysis software (Mediacybernetics. Silver Spring, MD).</p> <p>Results</p> <p>Parallel to mammographic analysis in humans, measurements of rodent mammary gland density were derived from area-based or volume-based algorithms and included: total circumscribed mammary fat pad mass, mammary epithelial mass, and epithelium-free fat pad mass. These values permitted estimation of absolute mass of mammary epithelium as well as breast density. The biological plausibility of these measurements was evaluated in mammary whole mounts from rats and mice. During mammary gland development, absolute epithelial mass increased linearly without significant changes in mammographic density. Treatment of rodents with tamoxifen, 9-cis-retinoic acid, or ovariectomy, and occurrence of diet induced obesity decreased both absolute epithelial mass and mammographic density. The area and volumetric methods gave similar results.</p> <p>Conclusions</p> <p>Digital image analysis can be used for screening agents for potential impact on reproductive toxicity or carcinogenesis as well as for mechanistic studies, particularly for cumulative effects on mammary epithelial mass as well as translational studies of mechanisms that explain the relationship between epithelial mass and cancer risk.</p

    Towards an artefact's-eye view: Non-site analysis of discard patterns and lithic technology in Neotropical settings with a case from Misiones province, Argentina

    Get PDF
    Surface scatters are an important source of archaeological data in the Neotropics, yet despite their role in exploring regional land use, existing frameworks have serious methodological and theoretical drawbacks. This study proposes a robust alternative to site-centric approaches, by examining spatial and technological variability in time-averaged deposits of artefacts collected from the modern surface of Misiones province, north-eastern Argentina. A family of spatial statistical techniques supported by Monte Carlo simulation identify statistically significant inhomogeneity and clustering in lithic point pattern data. This highlights interaction between technologically meaningful sub-samples of four assemblages, which is interpreted as reflecting long-term discard and association of distinctive reduction sequences. These are irreducible to individual episodes, demonstrating that partitioning palimpsests into sites poorly reflects record formation on a landscape level. This illustrates how explicit models of depositional trends can provide information on indigenous land use, and underlines the rich informative potential of surface archaeology in tropical settings

    Molecular Analysis of Serum and Bronchoalveolar Lavage in a Mouse Model of Influenza Reveals Markers of Disease Severity That Can Be Clinically Useful in Humans

    Get PDF
    Background: Management of influenza, a major contributor to the worldwide disease burden, is complicated by lack of reliable methods for early identification of susceptible individuals. Identification of molecular markers that can augment existing diagnostic tools for prediction of severity can be expected to greatly improve disease management capabilities. Methodology/Principal Findings: We have analyzed cytokines, proteome flux and protein adducts in bronchoalveolar lavage (BAL) and sera from mice infected with influenza A virus (PR8 strain) using a previously established non-lethal model of influenza infection. Through detailed cytokine and protein adduct measurements of murine BAL, we first established the temporal profile of innate and adaptive responses as well as macrophage and neutrophil activities in response to influenza infection. A similar analysis was also performed with sera from a longitudinal cohort of influenza patients. We then used an iTRAQ-based, comparative serum proteome analysis to catalog the proteome flux in the murine BAL during the stages correlating with “peak viremia,” “inflammatory damage,” as well as the “recovery phase.” In addition to activation of acute phase responses, a distinct class of lung proteins including surfactant proteins was found to be depleted from the BAL coincident with their “appearance” in the serum, presumably due to leakage of the protein following loss of the integrity of the lung/epithelial barrier. Serum levels of at least two of these proteins were elevated in influenza patients during the febrile phase of infection compared to healthy controls or to the same patients at convalescence. Conclusions/Significance: The findings from this study provide a molecular description of disease progression in a mouse model of influenza and demonstrate its potential for translation into a novel class of markers for measurement of acute lung injury and improved case management.Singapore. National Research FoundationSingapore-MIT Alliance for Research and Technology (ID-IRG research program
    corecore