276 research outputs found

    A role for the arginine methylation of Rad9 in checkpoint control and cellular sensitivity to DNA damage

    Get PDF
    The genome stability is maintained by coordinated action of DNA repairs and checkpoints, which delay progression through the cell cycle in response to DNA damage. Rad9 is conserved from yeast to human and functions in cell cycle checkpoint controls. Here, a regulatory mechanism for Rad9 function is reported. In this study Rad9 has been found to interact with and be methylated by protein arginine methyltransferase 5 (PRMT5). Arginine methylation of Rad9 plays a critical role in S/M and G2/M cell cycle checkpoints. The activation of the Rad9 downstream checkpoint effector Chk1 is impaired in cells only expressing a mutant Rad9 that cannot be methylated. Additionally, Rad9 methylation is also required for cellular resistance to DNA damaging stresses. In summary, we uncovered that arginine methylation is important for regulation of Rad9 function, and thus is a major element for maintaining genome integrity

    HOXB5 Cooperates with NKX2-1 in the Transcription of Human RET

    Get PDF
    The enteric nervous system (ENS) regulates peristaltic movement of the gut, and abnormal ENS causes Hirschsprung's disease (HSCR) in newborns. HSCR is a congenital complex genetic disorder characterised by a lack of enteric ganglia along a variable length of the intestine. The receptor tyrosine kinase gene (RET) is the major HSCR gene and its expression is crucial for ENS development. We have previously reported that (i) HOXB5 transcription factor mediates RET expression, and (ii) mouse with defective HOXB5 activity develop HSCR phenotype. In this study, we (i) elucidate the underlying mechanisms that HOXB5 mediate RET expression, and (ii) examine the interactions between HOXB5 and other transcription factors implicated in RET expression. We show that human HOXB5 binds to the promoter region 5′ upstream of the binding site of NKX2-1 and regulates RET expression. HOXB5 and NKX2-1 form a protein complex and mediate RET expression in a synergistic manner. HSCR associated SNPs at the NKX2-1 binding site (-5G>A rs10900296; -1A>C rs10900297), which reduce NKX2-1 binding, abolish the synergistic trans-activation of RET by HOXB5 and NKX2-1. In contrast to the synergistic activation of RET with NKX2-1, HOXB5 cooperates in an additive manner with SOX10, PAX3 and PHOX2B in trans-activation of RET promoter. Taken together, our data suggests that HOXB5 in coordination with other transcription factors mediates RET expression. Therefore, defects in cis- or trans-regulation of RET by HOXB5 could lead to reduction of RET expression and contribute to the manifestation of the HSCR phenotype

    Clinical and Serologic Manifestations of Autoimmune Disease in MRL-lpr/lpr Mice Lacking Nitric Oxide Synthase Type 2

    Get PDF
    Nitric oxide (NO) is an important mediator of the inflammatory response. MRL–lpr/lpr mice overexpress inducible nitric oxide synthase (NOS2) and overproduce NO in parallel with the development of an autoimmune syndrome with a variety of inflammatory manifestations. In previous studies, we showed that inhibiting NO production with the nonselective nitric oxide synthase (NOS) inhibitor NG-monomethyl–arginine reduced glomerulonephritis, arthritis, and vasculitis in MRL–lpr/lpr mice. To define further the role of NO and NOS2 in disease in MRL–lpr/lpr mice, mice with targeted disruption of NOS2 were produced by homologous recombination and bred to MRL–lpr/lpr mice to the N4 generation. MRL–lpr/lpr littermates homozygous for disrupted NOS2 (−/−), heterozygous for disrupted NOS2 (+/−), or wildtype (+/+) were derived for this study. Measures of NO production were markedly decreased in the MRL-lpr/lpr (−/−) mice compared with MRL-lpr/lpr (+/+) mice, with intermediate production by the MRL-lpr/lpr (+/−) mice. There was no detectable NOS2 protein by immunoblot analysis of the spleen, liver, kidney, and peritoneal macrophages of the (−/−) animals, whereas that of (+/+) was high and (+/−) intermediate. The (−/−) mice developed glomerular and synovial pathology similar to that of the (+/−) and (+/+) mice. However, (−/−) mice and (+/−) mice had significantly less vasculitis of medium-sized renal vessels than (+/+) mice. IgG rheumatoid factor levels were significantly lower in the (−/−) mice as compared with (+/+) mice, but levels of anti-DNA antibodies were comparable in all groups. Our findings show that NO derived from NOS2 has a variable impact on disease manifestations in MRL-lpr/lpr mice, suggesting heterogeneity in disease mechanisms

    Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials

    Get PDF
    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-product origin could significantly lower the investment costs of continuous fermentation systems. This work deals with a complete continuous beer fermentation system consisting of a main fermentation reactor (gas-lift) and a maturation reactor (packedbed) containing yeast immobilized on spent grains and corncobs, respectively. The suitability of cheap carrier materials for long-term continuous brewing was proved. It was found that by fine tuning of process parameters (residence time, aeration) it was possible to adjust the flavour profile of the final product. Consumers considered the continuously fermented beer to be of a regular quality. Analytical and sensorial profiles of both continuously and batch fermented beers were compared.(Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (FAPESPFundação para a Ciência e a Tecnologia (FC

    ITPKC Single Nucleotide Polymorphism Associated with the Kawasaki Disease in a Taiwanese Population

    Get PDF
    Kawasaki disease (KD) is characterized by systemic vasculitis with unknown etiology. Previous studies from Japan indicated that a gene polymorphism of ITPKC (rs28493229) is responsible for susceptibility to KD. We collected DNA samples from 1,531 Taiwanese subjects (341 KD patients and 1,190 controls) for genotyping ITPKC. In this study, no significant association was noted for the ITPKC polymorphism (rs28493229) between the controls and KD patients, although the CC genotype was overrepresented. We further combined our data with previously published case/control KD studies in the Taiwanese population and performed a meta-analysis. A significant association between rs28493229 and KD was found (Odds Ratio:1.36, 95% Confidence Interval 1.12–1.66). Importantly, a significant association was obtained between rs28493229 and KD patients with aneurysm formation (P = 0.001, under the recessive model). Taken together, our results indicated that C-allele of ITPKC SNP rs28493229 is associated with the susceptibility and aneurysm formation in KD patients in a Taiwanese population

    NELF Potentiates Gene Transcription in the Drosophila Embryo

    Get PDF
    A hallmark of genes that are subject to developmental regulation of transcriptional elongation is association of the negative elongation factor NELF with the paused RNA polymerase complex. Here we use a combination of biochemical and genetic experiments to investigate the in vivo function of NELF in the Drosophila embryo. NELF associates with different gene promoter regions in correlation with the association of RNA polymerase II (Pol II) and the initial activation of gene expression during the early stages of embryogenesis. Genetic experiments reveal that maternally provided NELF is required for the activation, rather than the repression of reporter genes that emulate the expression of key developmental control genes. Furthermore, the relative requirement for NELF is dictated by attributes of the flanking cis-regulatory information. We propose that NELF-associated paused Pol II complexes provide a platform for high fidelity integration of the combinatorial spatial and temporal information that is central to the regulation of gene expression during animal development

    Queer In AI: A Case Study in Community-Led Participatory AI

    Get PDF
    We present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this community's programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory and intersectional principles, and then assess the organization's impact. Queer in AI provides important lessons and insights for practitioners and theorists of participatory methods broadly through its rejection of hierarchy in favor of decentralization, success at building aid and programs by and for the queer community, and effort to change actors and institutions outside of the queer community. Finally, we theorize how communities like Queer in AI contribute to the participatory design in AI more broadly by fostering cultures of participation in AI, welcoming and empowering marginalized participants, critiquing poor or exploitative participatory practices, and bringing participation to institutions outside of individual research projects. Queer in AI's work serves as a case study of grassroots activism and participatory methods within AI, demonstrating the potential of community-led participatory methods and intersectional praxis, while also providing challenges, case studies, and nuanced insights to researchers developing and using participatory methods.Comment: To appear at FAccT 202

    Distal volcanic impacts on peatlands: palaeoecological evidence from Alaska

    Get PDF
    Despite the fact that volcanic ash (tephra) layers are found preserved in peat deposits around the world, comparatively little research has investigated the impacts of distal volcanic emissions on peatlands. This study investigates the impacts of several late-Holocene volcanic eruptions on five peatlands in southern Alaska using a palaeoecological approach. Testate amoebae analysis, peat humification analysis and a basic analysis of plant macrofossil components were applied across 11 tephra layers. Changes in macrofossil and testate amoebae assemblages occur across several of the tephra layers. The humification results were considered unreliable because of a methodological problem, a finding which may have implications for other studies using this technique. Redundancy analyses on testate amoebae data show statistically significant changes associated with two tephras. The most likely causes of the impacts are volcanic gases, acidic precipitation or tephra-derived leachates. The finding that some tephras are associated with impacts whereas others are not may relate to the season of the eruption or meteorological conditions at the time of ash fall. These results suggest the sensitivity of peatlands and peatland microbial communities to distal volcanic products and imply that changes in key palaeoclimatic proxies may be caused by a mechanism independent of climate change. Implications of the results for peat-based palaeoclimatic studies are discussed, as are possible directions for future research
    corecore