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 1 

ABSTRACT 2 

 3 

Despite the fact that volcanic ash (tephra) layers are found preserved in peat 4 

deposits around the world, comparatively little research has investigated the 5 

impacts of distal volcanic emissions on peatlands. This study investigates the 6 

impacts of several late-Holocene volcanic eruptions on five peatlands in 7 

southern Alaska using a palaeoecological approach. Testate amoebae analysis, 8 

peat humification analysis and a basic analysis of plant macrofossil components 9 

were applied across 11 tephra layers.   Changes in macrofossil and testate 10 

amoebae assemblages occur across several of the tephra layers. The 11 

humification results were unreliable because of a methodological problem, a 12 

finding which may have implications for other studies using this technique. 13 

Redundancy analyses on testate amoebae data show statistically significant 14 

changes associated with two tephras. The most likely causes of the impacts are 15 

volcanic gases, acidic precipitation or tephra-derived leachates. The finding 16 

that some tephras are associated with impacts whereas others are not may 17 

relate to the season of the eruption or meteorological conditions at the time of 18 

ash fall.  These results suggest the sensitivity of peatlands and peatland 19 

microbial communities to distal volcanic products and imply that changes in 20 

key palaeoclimatic proxies may be caused by a mechanism independent of 21 

climate change.  Implications of the results for peat-based palaeoclimatic 22 

studies are discussed, as are possible directions for future research. 23 



 3 

 1 

KEYWORDS: peatlands, bogs, mires, volcanoes, volcanic impacts, tephra, 2 

crytotephras, palaeoecology, testate amoebae, humification, macrofossils.  3 

 4 

Running title: Volcanic impacts on peatlands 5 

6 



 4 

 1 

INTRODUCTION 2 

 3 

Ombrotrophic peatlands receive all their nutrients and moisture from 4 

the atmosphere. As such they are extremely sensitive to deposition of 5 

atmospheric pollutants. While there has been a large amount of work on the 6 

impact of anthropogenic pollutants on peatlands (e.g. Gorham et al. 1984, 7 

Proctor & Maltby 1998) there has been little investigation of the impact of 8 

natural pollutants. Peatlands are found in many mid- and high-latitude volcanic 9 

regions such as New Zealand, South America, the Asian North Pacific, and 10 

northwestern North America. Visible and microscopic tephra layers have been 11 

found preserved in peatlands around the world and illustrate the potential 12 

extent and frequency of volcanic impacts on peatlands (Zoltai 1988, Dugmore 13 

et al. 1995, St Seymour & Christanis 1995, Holmes et al. 1999, van den Bogaard 14 

& Schmincke 2002, Kilian et al. 2003, Hang et al. 2006, Gehrels et al. 2006). 15 

Volcanoes may be an important control on peatland functioning and 16 

development.  17 

 18 

Volcanic impacts on peatlands: previous research 19 

 20 

‘Neo’-ecological studies 21 

 22 



 5 

 Little neo-ecological research has addressed the potential impacts of 1 

volcanic products on peatlands. Griggs (1919) briefly noted the return of 2 

several species to an upland bog in southwest Alaska buried by tephra from the 3 

1912 Katmai eruption, which covered a large number of peatlands (Rigg 1914). 4 

Perhaps significantly, Griggs’ (1919) list did not include any Sphagnum species.  5 

Given this effective absence of direct ecological studies some authors have 6 

attempted experimental studies. Hotes et al. (2004) applied varying quantities 7 

of tephra and ground glass simulating tephra to plots on a mire in Hokkaido, 8 

Japan. Results showed substantial changes in pore water chemistry, with 9 

increases in pH, electrical conductivity, SiO2, SO4
2- and Na+. Several changes in 10 

species composition were noticed with some species being lost, although many 11 

were later re-established. Sphagnum species were particularly affected with 12 

vascular plants increasing in relative abundance. Payne and Blackford (2005) 13 

applied small quantities of tephra and acids, both alone and in combination, to 14 

experimental plots on a bog in Scotland, with the aim of simulating products of 15 

the mid-Holocene Hekla-4 eruption.  Impacts on plants were drastic at higher 16 

acid applications, but no impacts on peat humification or testate amoebae 17 

communities were apparent. Impacts on plant communities were still apparent 18 

in April 2008, almost six years after application. Impacts were only associated 19 

with acid application, plots with tephra applied alone showed no recorded 20 

changes. Gauci et al. (2005) applied Na2SO4 to a Scottish peatland over a period 21 

of 18 months at levels equivalent to the 1783 Laki eruption. Results showed a 22 
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significant suppression of methane, although this effect was variable due to 1 

climate-driven changes in water table depth. 2 

All these studies have limitations. The Hotes et al. (2004) experiment 3 

was limited by the use of non-volcanic glass in many of the plots and by the 4 

lack of consideration of chemicals adhering to tephra. The Payne & Blackford 5 

(2005) experiment was limited by uncertainty over the realism of the 6 

experimental scenario (Grattan & Gilbertson 1994). The Gauci et al. (2005) 7 

study did not apply tephra. All the studies monitored only a limited range of 8 

variables, but have shown enough to suggest the possibility of significant 9 

impacts on plant species composition, microbial communities and peat 10 

geochemistry. 11 

 12 

Palaeoecological studies 13 

  14 

 Due to the inherent difficulties in direct ecological investigations of real 15 

volcanic impacts on peatlands and the uncertainty in experimental scenarios, 16 

an alternative approach is to use palaeoecological records. Due to the acidic 17 

and anoxic environment below the surface layers of peat, organic material does 18 

not fully decay and long sedimentary sequences are accumulated. 19 

Palaeoecological studies exploit this archive by analysis of the macrofossil plant 20 

remains, preserved organisms within the peat, or preserved particles such as 21 

pollen. Tephra layers are preserved within the peat and analysis of changes in 22 

the palaeoecological record across these layers provides an opportunity to 23 
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investigate volcanic impacts (Blackford, 1997). The term ‘tephropalynology’ 1 

has recently been coined to refer to pollen studies across tephra layers 2 

(Newnham et al. 1998, Lowe and Hunt 2001, Edwards et al. 2004). A broader 3 

term ‘tephropalaeoecology’ may be appropriate to encompass studies based on 4 

other palaeoecological proxies.  5 

 Previous studies have shown impacts from proximal volcanic activity 6 

(Kuhry 1988) and large volcanic eruptions in the geological record (Crowley et 7 

al. 1994, Kovar-Eder et al. 2001). However, studies of distal volcanic impacts 8 

from Holocene eruptions have often shown variable evidence for impacts 9 

(Mehringer et al. 1977, Hotes et al. 2001, 2006). In New Zealand Giles et al. 10 

(1999) showed increases in degraded pollen and a particularly notable increase 11 

in Leptospermum pollen across the Holocene Kaharoa tephra. The most 12 

concerted study of volcanic impacts on peatlands has been in Britain and 13 

Ireland following the discovery of Icelandic cryptotephras (Dugmore 1989, 14 

Pilcher & Hall 1992, Dugmore et al. 1995) and suggestions of volcanic impacts 15 

from the Irish dendroclimatic record (Baillie & Munro 1988). Blackford et al. 16 

(1992) showed coincidence between a decline in Pinus sylvestris (scots pine) 17 

pollen and the mid-Holocene Hekla-4 cryptotephra in northern Scotland and 18 

suggested a causal relationship. Several other studies have found limited or no 19 

distinct changes associated with this and other Icelandic tephras (Bennett et 20 

al. 1992, Edwards et al. 1994, Hall et al. 1994, Charman et al. 1995, Caseldine 21 

et al. 1998, Hall 2003). In western Ireland Dwyer & Mitchell (1997) found that 22 

tephra layers were not associated with a regional vegetation change, but did 23 
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find changes in several mire pollen types and the testate amoeba Amphitrema 1 

flavum, which they interpreted as a shift to wetter peat surface conditions. 2 

Where impacts have been noted some studies have suggested a climatic origin, 3 

but a direct impact on the mire system appears a more probable explanation 4 

(Birks 1994, Grattan et al. 1999).    5 

 6 

Possible modes of volcanic impacts on peatlands 7 

 8 

While previous research on volcanic impacts on peatlands has been limited, 9 

there is sufficient evidence to suggest that changes may occur.  Several 10 

possible mechanisms can be suggested, based on studies of anthropogenic 11 

pollutants on peatlands and volcanic impacts on other ecosystems; these are 12 

outlined below. 13 

 14 

1. Indirect, climatic impact. Volcanic eruptions produce large quantities of 15 

sulphurous gases which, following large explosive eruptions, combine 16 

with water to form sulphuric acid aerosols in the upper atmosphere. 17 

These aerosol particles are generally efficient scatterers but only weak 18 

absorbers of radiation at solar wavelengths leading to an increase in 19 

atmospheric albedo and tropospheric cooling. Large, sulphur-rich 20 

volcanic eruptions may cool the climate by a few tenths of a degree up 21 

to several degrees over a period of years (Self et al. 1981, Rampino & 22 

Self 1982, 1984, Scuderi 1990, McCormick et al. 1995, Zielinski 2000, 23 
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Gervais & MacDonald 2001). Changes in atmospheric circulation may also 1 

lead to changes in precipitation patterns. The surface wetness of 2 

ombrotrophic peatlands is directly linked to hydroclimate. Volcanic 3 

cooling may lead to reduced evapotranspiration and a wetter mire 4 

surface.  5 

 6 

2. Physical impact of tephra. Distal tephra is primarily composed of sharp, 7 

angular shards of volcanic glass. Deposition of tephra may lead to 8 

abrasion of plant surfaces, inhibition of photosynthesis, blocking of 9 

stomata, increased reflectivity, inhibition of gas exchange between soil 10 

and atmosphere and crushing of plant tissues (Griggs 1922, Eggler 1948, 11 

Wilcox 1959, Cook et al. 1980, Bjarnason 1991, Clarkson & Clarkson 12 

1994).  Peatland plant communities may be particularly sensitive as 13 

plants are low-growing and include many bryophytes lacking a protective 14 

cuticle. Impacts on plants will have knock-on impacts on other aspects of 15 

the ecosystem.  16 

 17 

3. Impact on peatland hydrology. A layer of tephra across the surface of a 18 

peatland might impact on the hydrology of the mire. Crowley et al. 19 

(1994) have suggested that deposition of thick tephra layers could lead 20 

to surface ponding while Hotes et al. (2004) have suggested that 21 

inclusion of tephra could lead to enhanced aeration of the upper layers 22 

of peat. 23 
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 1 

4. Chemical impact of tephra and tephra leachates. Although volcanic 2 

glass is generally preserved intact for thousands of years (Dugmore et al. 3 

1992), elements may be released both on initial contact with water (cf. 4 

Wissmar et al. 1981) and through longer term leaching. Elements 5 

released by tephra leaching most commonly include Cl, S, Na, Ca, K, and 6 

Mg (Smith et al. 1983). Hodder et al. (1991) discussed evidence for 7 

enhanced Si, Fe, Mg and Ca in pore-waters adjacent to tephra layers 8 

preserved in peat and Hotes et al. (2004) noted detectable impacts on 9 

pore water chemistry from simulated tephra deposition. It is possible 10 

that tephra leachates might supply nutrients which are limiting in an 11 

oligotrophic ecosystem (such as K) or that tephra leachates may release 12 

elements that may be toxic to some organisms (such as Zn, Cu, Cd, Pb 13 

and Ba). Anthropogenic metal pollutants have been suggested to have 14 

caused damage to peatland bryophytes in northern England (Gorham et 15 

al. 1987).  16 

 17 

5. Volcanic gas and acids. Volcanic eruptions release large quantities of 18 

gases into the atmosphere including CO2, SO2, HCl and HF (Wilcox 1959, 19 

Le Guern et al. 1988, Symonds et al. 1988, Delmelle et al. 2002). 20 

Volcanic compounds may be deposited as a gas, acidic precipitation, dry 21 

deposition, acidic aerosols and adhering to tephra particles (Rose 1977, 22 

Oskarsson 1980, Delmelle et al. 2001). Plants exposed to volcanic gases 23 
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may show signs varying from lesions and burnt spots to total defoliation 1 

and death (Parnell & Burke 1990, Clarkson & Clarkson 1994, Delmelle et 2 

al. 2002). Historical records following the 1783-4 Laki eruption in Iceland 3 

show the potential of volcanic gases to damage plants across a vast area 4 

(Thorarinsson 1981, Sigurdsson 1982, Camuffo & Enzi 1995, Grattan & 5 

Charman 1994, Grattan & Gilbertson 1994, Grattan & Pyatt 1994, 6 

Grattan et al. 1998, Thordarson & Self 2001). The sensitivity of 7 

bryophytes, and particularly Sphagnum, to acid deposition has been 8 

demonstrated in contemporary studies (Ferguson et al. 1978, 1980). 9 

Volcanic acid deposition could modify pH as the peat exchange complex 10 

is already strongly saturated by hydrogen ions so peatlands have little 11 

capacity for buffering inputs of acidity (Gorham et al. 1984). 12 

Acidification by anthropogenic acid rain has been widely noted (Proctor 13 

& Maltby 1998, Skiba et al. 1989, Sanger et al. 1994, Smith et al. 1993) 14 

but it is unclear whether a short-lived acid pulse would produce any 15 

lasting impacts. An increase in pH following deposition of volcanic 16 

products is also conceivable (Payne & Blackford 2005).  17 

 18 

Aims of this study 19 

 20 

 This study adopts a palaeoecological approach to investigating potential 21 

volcanic impacts on peatlands, applying a broader range of palaeoecological 22 

techniques to a greater number of tephra layers than in previous studies. 23 
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Results are tested statistically to evaluate a volcanic impact explanation for 1 

observed changes. A multiple working hypothesis approach is used to 2 

investigate the potential cause of the impacts, based on the mechanisms 3 

described above.  4 

 5 

SITES and METHODS 6 

 7 

Sites and Fieldwork 8 

 9 

Of the many areas of the world in which peatlands and volcanoes co-10 

exist, the Pacific Northwest of North America, and specifically Alaska, was 11 

selected for this study because of the occurrence of numerous volcanoes (8% of 12 

the Earth's total) and the great abundance of undisturbed Sphagnum peatlands 13 

(45% of the state is classified as wetland). Peatlands were sampled in two 14 

general regions: the Kenai Peninsula of southcentral Alaska and the southeast 15 

Alaskan 'panhandle' around Juneau and Haines (Fig. 1). The Kenai Peninsula is 16 

comparatively close to a number of volcanoes, and several visible millimetre-17 

scale tephra layers are present. Southeast Alaska is more remote from most 18 

Alaskan volcanoes and only cryptotephras, not visible in the field, are present 19 

(Payne and Blackford 2004, Payne et al. 2008). Peatlands were selected on the 20 

basis of maximum peat depth, lack of obvious anthropogenic disturbance and 21 

for ombrotrophy where possible. Two sites were cored in the Kenai Peninsula. 22 

Moose Pass is a small mire (c.100x100 m) lying in the base of a steep, glaciated 23 
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valley in the northeastern Kenai Peninsula (60 30’N, 149  26’W)(Fig. 1). 1 

Sterling is a large (c.200x300 m) kettle-hole peatland lying in the Kenai 2 

Lowlands at 60 31’N, 150  31’W. Both mires are oligotrophic but may not be 3 

ombrotrophic. Three sites were also sampled in southeast Alaska. Point Lena is 4 

an ombrotrophic raised bog (c.300x200 m) lying between the Coast Mountains 5 

and the sea (Favourite Channel) near Juneau (58 23’N 134 44’W)(Dachnowski-6 

Stokes 1941). Eaglecrest is a large (c.700x300 m) blanket mire in the valley of 7 

the Fish Creek, towards the northern end of Douglas Island (58 20’N 134 33’W). 8 

Chilkoot Pond is a small peatland on the isthmus of land dividing Lutak Inlet 9 

from Chilkoot Lake near Haines (59 19’N 135 33’W). The peat deposits at 10 

Chilkoot are adjacent to a large pond, and the lower peat deposits represent 11 

detrital material in-filling the pond. The vegetation of all five sites is broadly 12 

similar, including Empetrum nigrum, Eriophorum spp., Oxycoccus microcarpus, 13 

Cornus canadensis, Cladonia portentosa and extensive Sphagnum carpets. 14 

Cores were extracted from the deepest areas of peat using a 50-mm bore 15 

Russian-pattern peat corer (Aaby & Digerfeldt 1986). Monolith blocks were cut 16 

out where the surface peat was too loose to allow coring.  17 

 18 

Tephrostratigraphy 19 

 20 

In the Kenai Peninsula sites tephras are visible to the naked eye, but in 21 

the cores from southeast Alaska only cryptotephras are present. Cryptotephra 22 

layers were identified by ashing and microscopy (Pilcher & Hall 1992). The glass 23 
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geochemistry of all tephras was studied using electron probe microanalysis 1 

(EPMA); the findings of this work have been described previously (Payne 2005, 2 

Payne & Blackford 2004, 2008, Payne et al. 2008). The probable tephra sources 3 

are shown in Table 1. Concentration profiles for cryptotephras were 4 

constructed by adding a Lycopodium innoculum to allow a quantitative 5 

estimate of glass shard concentrations (Caseldine et al. 1998). For the visible 6 

tephra layers, shards were highly numerous and concentration profiles were 7 

approximated by calculating loss-on-ignition values across the tephras. Tephras 8 

of unknown age were either dated directly by radiocarbon or using previously 9 

derived age-depth models (Payne 2005).  10 

 11 

The palaeoecological record 12 

 13 

The palaeoecological record across the tephras was investigated at high 14 

resolution using either 5 mm or 10 mm-depth contiguous samples. Age-depth 15 

models for the sites suggest these samples represent between approximately 8 16 

and 50 years of peat accumulation (Table 1). Cores were frozen to allow 17 

precise sub-sampling at high resolution. Three methods were applied: testate 18 

amoebae analysis, humification analysis and a basic plant macrofossil analysis. 19 

All three methods are standard techniques widely used in peatland 20 

palaeoclimate studies but may also be sensitive to different aspects of volcanic 21 

impacts on peatlands. 22 
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Peat humification was measured across tephras using the standard alkali-1 

extraction and colorimetry method (Overbeck 1947, Aaby & Tauber 1975, 2 

Blackford & Chambers 1993). Peat humification is a measure of the degree of 3 

decomposition of peat, with more humified peats being more amorphous and 4 

darker in colour (Clymo 1983). In terms of volcanic impact, humification 5 

measurement may reflect any impacts on peatland hydrology and plant 6 

decomposition processes. The colorimetry method attempts to extract humic 7 

and other acids, which are products of the decomposition process. The darker 8 

the colour of the alkali extract, the higher the concentration of humic acids 9 

and the more humified the peat is considered to be. Recent studies have shown 10 

that the organic acids extracted are actually mostly lower weight fulvic acids, 11 

amino acids and polysaccharides rather than the humic acids conventionally 12 

assumed and a further concern is the extent to which these substances may be 13 

extracted from differing plant species (Caseldine et al. 2000, Yeloff & Mauquoy 14 

2006). Humification was analysed using a method based on Blackford & 15 

Chambers (1993). Sub-samples (0.1g) of dried, ground peat were heated with 16 

8% NaOH for an hour. Samples were diluted, filtered through Whatman 17 

‘Qualitative 1’ filter paper and allowed to stand. Transmission was measured at 18 

540 nm after four hours from initial mixing. The remaining dried peat was 19 

incinerated at 550° C to calculate loss-on-ignition (LOI). Transmission readings 20 

were corrected for LOI using the formula Hc=Hr/(1/LOI) where Hc is the 21 

corrected humification value, Hr is the measured transmission value and LOI is 22 

loss on ignition expressed as a proportion (Blackford & Chambers 1993).  23 
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Testate amoebae analysis was applied across all the tephra layers. 1 

Testate amoebae are unicellular micro-organisms (protists) which are abundant 2 

in peatlands and often found in palaeoecological studies (Charman, 2001). 3 

Testate amoebae communities are primarily controlled by hydrology with pH 4 

and nutrient state as secondary controls (Mitchell et al. 1999, Charman et al. 5 

2001, Payne et al. 2006). In terms of volcanic impacts, testate amoebae were 6 

selected to show any impacts on the peatland microbial community, changing 7 

pH, and changes in water table depth.  Samples were prepared using the 8 

standard water-based method of Hendon & Charman (1997). 1 cm3 peat sub-9 

samples were boiled in water for approximately 10 minutes, sieved at 300 μm 10 

to remove the coarse fraction and then back-filtered at 15 μm to remove fine, 11 

highly degraded organic particles. The resulting material was centrifuged at 12 

3000 RPM for five minutes to concentrate the tests and slides prepared by 13 

mixing the remaining material with glycerol. Slides were examined at 400 X 14 

magnification and tests identified using a range of taxonomic literature 15 

(Deflandre 1929, 1936, Grospietsch 1964, Ogden & Hedley 1980, Ogden 1983, 16 

Luftenegger et al. 1988, Charman et al. 2000, Clarke 2003). The test-forming 17 

bdelloid rotifer Habrotrocha angusticollis was also counted and included in 18 

percentage calculations. The taxonomic scheme closely followed that 19 

employed by Payne et al. (2006).  20 

Quantitative reconstruction of pH and depth to water table (DWT) 21 

changes was carried out using a transfer function derived from surface samples 22 

of southern Alaskan peatlands (Payne et al. 2006). The optimum two-23 
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component WA-PLS transfer function was used with boot-strapped error 1 

estimates calculated for each sample using 1000 cycles. The reconstructed 2 

values are termed testate amoebae-inferred pH (TI-pH) and testate amoebae- 3 

inferred depth to water table (TI-DWT). 4 

An outline macrofossil analysis of the major peat components was 5 

undertaken to show any major impact of volcanic activity on the peat forming 6 

plant communities.  Methods followed the first stage of the quadrat and leaf 7 

count (QLC) methodology of Barber et al. (1994). The >300 μm component of 8 

peat remaining from testate amoebae analysis was further cleaned using a jet 9 

of water, placed in a petri dish and examined at 50 X magnification. Peat 10 

components were separated into five categories: Sphagnum (including all 11 

Sphagnum and other bryophyte material), monocotyledons, Ericales (also 12 

including all shrub and woody remains), unidentifiable organic matter (UOM) 13 

and other material which cannot be easily assigned to other classes such as 14 

seeds and insect remains. A 10X10 mm grid was placed under the sample and 15 

the number of squares in which each of these components occurred was 16 

counted. This process was repeated four times for each sample and the mean 17 

calculated.  18 

 19 

Data analysis 20 

 21 

Most studies of tephra-impacts in the palaeoecological record have 22 

assessed impacts solely by qualitative inspection of the data. Here, we employ 23 
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a quantitative hypothesis-testing approach using constrained ordination with an 1 

explanatory variable designed to simulate a volcanic impact (Lotter & Birks 2 

1993, Eastwood et al. 2002). Previous studies have adopted two distinct 3 

approaches to modelling volcanic impacts. Initially Lotter & Birks (1993) 4 

modelled the volcanic impact as an exponential decay process from an 5 

arbitrarily defined value at the tephra layer. This approach has the 6 

disadvantage that the volcanic impact model is purely a conceptual construct 7 

with no empirical basis.  More recently Barker (2000) and Eastwood et al. 8 

(2002) used the tephra concentration profile as the explanatory variable. 9 

Although this may seem the superior approach because it is based on real data, 10 

it is not applicable here. Tephra concentration profiles in peatlands represent 11 

not only the initial deposition phase, but also the post-depositional movement 12 

of tephra with downwards gravitational movement of tephra particles through 13 

the peat and upward translocation, most likely due to movement of tephra 14 

with plant growth or a rising water table (Payne et al. 2005). The tephra 15 

concentration profile has no direct relationship with the pattern and timing of 16 

volcanic impacts on the mire. Therefore in this study the approach employed is 17 

based on a conceptual model of volcanic impact, similar to that used by Lotter 18 

& Birks (1993).  The model used here assumes that a volcanic event will be 19 

represented by a large impact at the time of tephra deposition, decreasing 20 

with time thereafter.  In addition, it assumes that there will be some overall 21 

difference between conditions before and after the event. The explanatory 22 

variable (termed ‘Volcanic’) therefore consists of two components: an 23 
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exponential decay model and a simple before (0) and after (1) nominal 1 

variable. The exponential decay function is identical to that used by Lotter & 2 

Birks (1993) and is defined as exp x-αt  where α is the decay constant, here 3 

given a value of 0.5 and t is sample time (in this case substituted by depth) 4 

after the tephra peak. The variable is assigned a value of 0 prior to the tephra 5 

peak and then a value of 100 at the tephra peak sample. Varying the initial 6 

value and the rate of decay makes little difference to the results obtained.  For 7 

the data across layer ST 24, the tephra peak was taken to be the lower of the 8 

two LOI troughs. For the MP 27 data, the missing sample containing the tephra 9 

peak was excluded from the analysis and the tephra peak taken to be the 10 

sample directly above.  11 

Ordination analyses were undertaken using redundancy analysis (RDA), 12 

the constrained form of principal components analysis (PCA), the most 13 

appropriate approach given the short compositional gradients (<1.4 standard 14 

deviations). Monte Carlo permutation tests (999 permutations) were used to 15 

provide a test of the null hypothesis that the species and explanatory data are 16 

unrelated and to provide an estimate of the significance level of any 17 

relationships. Humification and macrofossil results were partialled out to 18 

eliminate possible complications from testate amoebae vegetation preferences 19 

and test decomposition processes. Depth was also partialled out as a surrogate 20 

for time, to separate the affect of pre-existing environmental change, 21 

primarily longer-term climatic change.  22 
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In addition to the ordination analyses two other, more basic approaches 1 

were also tested. The sequences were zoned using several techniques 2 

(CONSLINK, CONISS, SPLITLSQ and SPLITINF) in ZONE v.1.2 (Juggins 1992). If the 3 

first division of assemblage data coincides with the position of the tephra then 4 

a significant change at the time of deposition may be suggested.  5 

Analysis of similarity (ANOSIM) was used to test for a significant 6 

difference between testate amoebae communities above and below the tephra. 7 

The analysis was carried out using PAST ver 1.71 (Hammer et al. 2001) with a 8 

Bray-Curtis distance measure and 10,000 permutations. The sample including 9 

the tephra peak was excluded from the analysis. High values of the test 10 

statistic (RANOSIM) (approaching 1) indicate the samples within a group are more 11 

similar to each other than to any samples from another group.  12 

 13 

 14 

 15 

RESULTS 16 

 17 

Palaeoenvironmental analyses are discussed below for 11 tephra horizons from 18 

Moose Pass (MP 10, MP 27, MP 39), Sterling (ST 12, ST 24 and ST 36), Eaglecrest 19 

(ECR 100 and ECR 162), Point Lena (LNA 39 and LNA 100) and Chilkoot Pond 20 

(CHP 33) peatlands.   21 

 22 

Macrofossil analysis 23 



 21 

 1 

The evidence for impacts on the macrofossil record is variable between 2 

sites and proxies.  Although some changes are subtle, others are relatively 3 

distinct (Fig. 2).  Across tephras LNA 39 and MP 27 there is an increase in 4 

Sphagnum. This is the beginning of a sustained increase in LNA 39 and a short 5 

phase in MP 27. Across tephras ECR 162 and ST 12 there is a peak in UOM 6 

coincident with the tephra peak and in ST 12 this is accompanied by a 7 

distinctive peak of monocotyledons.  Peaks in UOM were also seen noted 8 

coincident with three other southeast Alaskan tephra layers (Payne, 2005).  9 

While it is possible that increases in both UOM and Sphagnum could be related 10 

to tephra deposition, the evidence for an increase in UOM is more convincing.  11 

Profiles show peaks in UOM which are exactly coincident with tephra 12 

deposition, and which are of high magnitude.  A further six sites show little 13 

evidence of any macrofossil changes coincident with the tephra (CHP 33, LNA 14 

100, ECR 100, MP 10, MP 39 and ST 36). Across tephra ST 24 there is an increase 15 

in Sphagnum and decrease in monocotyledons, but these changes occur below 16 

the tephra peak.  17 

 18 

Humification 19 

 20 

The plots of transmission values across cryptotephras show that the glass 21 

concentration peak generally coincides with a trough in transmission values and 22 

is followed by increasing values (Fig. 2). In three of the plots this post-tephra 23 
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increase in values is either minor or short-lived (CHP 33, ECR 162 LNA 100), but 1 

in two (ECR 100 and LNA 39) the increase marks the start of a prolonged trend. 2 

Correcting for loss on ignition makes little difference to the trends.   3 

All the plots of transmission data across visible tephra layers (MP 10, MP 4 

27, MP 39, ST 12, ST 24 and ST 36) show notable increases in raw transmission 5 

data but significant decreases in corrected transmission (Fig. 2). Increased raw 6 

transmission values are expected because of the relative reduction in quantity 7 

of organic material in the sample. Corrected values show transmission values 8 

decreased by over 20% in some sites; these are very substantial changes and 9 

should be easily visible with the naked eye. However, no such visible change 10 

can be seen in these samples, indicating that this pattern is an artefact of the 11 

methodology used rather than a genuine result. The correction factor applied 12 

to the raw data is derived from experiments conducted by Blackford & 13 

Chambers (1993) and usually makes minimal difference to the results when LOI 14 

values are high and mineral content therefore low. The large disparity between 15 

measured and corrected transmission values here suggests some aspect of 16 

humification measurement or correction is not working as it should where LOI 17 

values are low. The humification results are thus considered unreliable. This 18 

issue is discussed further below.  19 

 20 

Testate amoebae 21 

 22 
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Impacts on testate amoebae are variable. Although some profiles show 1 

convincing evidence for major change coincident with tephra deposition, other 2 

profiles show little or no evidence (Fig. 3). Qualitatively there appear to be 3 

changes coincident with the tephra in several of the profiles- most distinctly in 4 

ECR 162, ECR 100, LNA 100 and ST 12. The ANOSIM results show significant pre- 5 

and post-tephra differences in all but two of the profiles (Table 2). RANOSIM 6 

values are moderately high, and highly significant for some profiles. However 7 

these findings do not provide unequivocal evidence for volcanic impact because 8 

the method does not account for antecedent trends. The zonation analysis 9 

results (Table 3) show that all techniques indicate a zone boundary adjacent to 10 

the tephra layer in four of the profiles: ECR 162, ECR 100, LNA 100 and ST 12.  11 

Using the RDA methodology and the strictest test- partialling out macrofossil 12 

data, humification and depth, the ‘volcanic’ variable explains a significant 13 

proportion of variance in two profiles: ST 12 and LNA 100 (Table 4).  14 

In the data from ST 12 the most notable changes are a significant drop in 15 

abundance of Amphitrema flavum and a loss of Hyalosphenia papilio at the 16 

tephra peak. In LNA 100, Amphitrema flavum abundance declines below the 17 

tephra layer but is actually increasing at the position of the tephra peak. The 18 

most distinct changes at this site are a loss of Difflugia pulex and increases in 19 

Amphitrema stenostoma and Amphitrema wrightianum. Qualitative data 20 

inspection and zonation analysis also suggest changes in the ECR 162 and ECR 21 

100 profiles. In ECR 100 this change is characterised by a loss of A. flavum and 22 

H. papilio and increases in Difflugia tuberculata and Phryganella acropodia. In 23 
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ECR 162 the data show a loss of A. flavum and increases in Bullinularia indica 1 

and Heleopera sphagni. Results from these four profiles show little similarity in 2 

response. In ST 12 and ECR 100 there is a distinct loss of H. papilio, but in LNA 3 

100 there is an apparent increase. In three of the profiles there is a loss of A. 4 

flavum, however in LNA 100 percentages are actually increasing by the point of 5 

the tephra peak. ECR 162 shows a large increase in B. indica, however, in LNA 6 

100 there is a slight decline in this taxon. Overall, none of the major taxa show 7 

a consistent response to tephra deposition in these four profiles. Table 5 shows 8 

changes in several major taxa across the tephra layer in all the analysed peat 9 

profiles. Changes are qualitatively assessed as an increase, decrease, no 10 

change or that the taxon is not sufficiently abundant to make a judgment. 11 

There is little consistency in these changes. For instance, A.flavum is judged to 12 

increase in abundance across three tephras and decrease in abundance across 13 

three others. On the strength of the evidence presented in this table, the most 14 

consistent impacts are on A. catinus, which increases in abundance across all 15 

four tephras in which a distinct change is noted. Equally, P. acropodia also 16 

increases across all tephras where a change is noted; however, some of these 17 

changes are indistinct.  18 

There is no convincing evidence that certain testate amoebae species 19 

are particularly affected by volcanic impacts. Although several species show 20 

major changes coincident with tephra deposition these are generally not 21 

replicated between profiles. This lack of replication suggests that changes are 22 

not due to direct toxicity of volcanic products on some species. Instead it 23 
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seems probable that changes are due to a volcanically-forced environmental 1 

change affecting profiles differently, depending on their pre-existing state.  2 

To investigate the possible mechanism of these changes, the species 3 

data have been quantitatively interpreted using transfer functions for two 4 

environmental variables: DWT and pH. Initially, considering the four profiles in 5 

which impacts seem most distinct (LNA 100, ST 12, ECR 100 and ECR 162), 6 

there is little consistency in response. In terms of TI-DWT, the tephra peak 7 

coincides with minor peaks in ECR 162 and ST 12, a minor trough in ECR 100, 8 

and a declining trend in LNA 100. In terms of TI-pH, the tephra peak coincides 9 

with a peak in LNA 100, a minor peak in ECR 100, an increasing trend in ST 12, 10 

and little change or a minor trough in ECR 162. These results demonstrate an 11 

inconsistent response. Many of the apparent changes do not exceed the 12 

bootstrapped error estimates for the reconstructed values. One of the few 13 

consistent changes to exceed the error estimates is a general increase in TI-pH 14 

in ST 12. However, this trend starts from the base of the profile and cannot be 15 

attributed solely to a volcanic impact. A similar inconsistent TI-DWT and TI-pH 16 

response is also seen in the other profiles. 17 

Overall, the testate amoebae results show evidence for a volcanic 18 

impact in some profiles but not in others. The apparent testate amoebae 19 

response to a volcanic impact appears to vary between tephras and does not 20 

produce a characteristic response in terms of species changes or TI-DWT and 21 

TI-pH. The lack of a consistent increase or decrease in inferred pH or DWT 22 
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coincident with the tephra layer suggests that if the changes are volcanic in 1 

origin they are not due to the changing pH or surface moisture. 2 

 3 

Consistency between proxies 4 

 5 

 Both macrofossils and testate amoebae (although most probably not 6 

humification) show evidence for changes coincident with tephra layers in some 7 

sites.  Testate amoebae analysis is the most quantitative method used here. 8 

Our results suggest that impacts are most distinct for profiles ST 12 and LNA 9 

100, and may also be present for ECR 100 and ECR 162 although the evidence is 10 

weaker. Macrofossil results show a distinct change across the ST 12 tephra with 11 

a peak in monocotyledons and UOM. Macrofossil data across ECR 162 also show 12 

a peak in UOM at the time of deposition of the tephra.  No distinct macrofossil 13 

change is noted in LNA 100 and in ECR 100 a major macrofossil change is offset 14 

from the tephra peak by 2 cm. The macrofossil results show the best evidence 15 

for changes coincident with tephra deposition in profiles ECR 162, ST 12 and MP 16 

27. In two of these, testate amoebae changes were also noted (ECR 162 and ST 17 

12). In profile MP 27 there is only limited evidence for testate amoebae change 18 

coincident with the tephra peak. In many cases impacts shown with one proxy-19 

record are not necessarily shown by the other. 20 

 21 

DISCUSSION 22 
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 1 

Is there evidence for a volcanic impact? 2 

 3 

 The palaeoecological results provide some evidence for changes 4 

coincident with the deposition of the tephra layers, but these changes are not 5 

present in all profiles.  Evidence is most convincing for the two profiles in 6 

which the volcanic impact model described a significant proportion of the 7 

variance in the testate amoebae data. These results show that not only is 8 

change occurring but also that this change is consistent with what would be 9 

expected as a response to a volcanic impact.  A study of this nature can never 10 

exclude the possibility that changes may occur coincident with a volcanic 11 

eruption but have an independent cause. However, the possibility of a 12 

sufficiently large non-volcanic ‘event’ coinciding so exactly with an eruption 13 

must be very small. The results show that in some profiles and with some 14 

proxies there are changes coincident with tephra deposition that appear likely 15 

to have a volcanic cause.  However, these changes were not found across all 16 

tephra layers and where they are found with one proxy-record they are not 17 

always found in the other. 18 

 19 

Causes of the impact 20 

 21 
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Several working hypotheses to explain any apparent impacts were outlined in 1 

the introduction. The changes noted in the palaeoecological record can now be 2 

evaluated against each of these hypotheses.  3 

 4 

1. Indirect, climatic impact. Volcanic gases and aerosols might lead to 5 

climatic cooling and a consequent increase in mire surface wetness 6 

which might be detectable here as a decrease in TI-DWT, increase in 7 

transmission, and increase in Sphagnum if sufficiently long-lived. The 8 

evidence here does not support this hypothesis. There is no replicated 9 

change in TI-DWT or the macrofossil record consistent with an increase 10 

in surface wetness.  11 

 12 

2. Physical impact of tephra deposition. Tephra deposition might affect 13 

plant functioning, perhaps leading to a shift from bryophytes to 14 

monocotyledons. Possible impacts on testate amoebae or humification 15 

are unclear. The palaeoecological record does show an increase in 16 

monocotyledons in some profiles (most noticeable in ST 12), but not in 17 

others. Physical impacts seem unlikely given the low concentrations of 18 

tephra in the southeast Alaskan sites.  19 

 20 

3. Impact on peatland hydrology. It is possible that tephra deposition 21 

might lead to a shift to either wetter or drier mire surface conditions. 22 

Although there is some evidence of a shift to drier-indicating macrofossil 23 
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components there is no replicated change in TI-DWT coincident with 1 

tephra deposition.  2 

 3 

4. Chemical impact of tephra and tephra-derived leachates. The 4 

deposition of tephra might supply elements that could be either toxic or 5 

limiting nutrients. Supply of nutrients might increase the abundance of 6 

more nutrient-demanding species of plant and amoebae; increasing the 7 

abundance of monocotyledons relative to Sphagnum and perhaps 8 

increasing UOM abundance if decomposition was enhanced. The 9 

macrofossil data could conceivably be explained by changes in the 10 

nutrient supply although there is no obvious shift to testate amoebae 11 

taxa typical of more nutrient-rich conditions.  12 

 13 

5. Volcanic gas and acids. Volcanic gas and acids might damage peatland 14 

plants perhaps leading to an increase in monocotyledons and UOM 15 

relative to bryophytes. The macrofossil data do provide some support for 16 

this suggestion. The impacts on testate amoebae are harder to predict. 17 

A change in microbial community due to sulphate deposition (Gauci et 18 

al. 2005) might lead to changes in the food source of some amoebae 19 

species. It is conceivable that these changes in the microbial food web 20 

could explain the testate amoebae response. Volcanic acid deposition 21 

could also lead to a change in peatland pH but the results here do not 22 

show a consistent change in TI-pH.  23 
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 1 

Taken overall, the palaeoecological evidence allows us to rule out the 2 

climatic and hydrological impact hypotheses, and the physical impact of tephra 3 

also appears unlikely. The chemical impact of tephra and the impact of 4 

volcanic gases and acids cannot be as easily ruled out and provide the most 5 

likely explanation for the apparent impacts observed in some profiles.  6 

Reasons for differential response 7 

 8 

 These results show a variable response to tephra deposition. In some 9 

sites and with some tephra layers impacts appear quite distinct; however, in 10 

other locations no impacts are evident by these methods. There are several 11 

possible factors which could have contributed to these differing results.   12 

One important factor might be the volume of an eruption. Larger-volume 13 

eruptions will produce more tephra which may travel further and which may 14 

have more adsorbed acids and other compounds. The results provide some 15 

indication that this may be an important factor. Of the four greatest apparent 16 

impacts (ECR 162, ECR 100, LNA 100 and ST 12), several tephras are from 17 

notably large-volume eruptions. The White River eruption, which formed the 18 

LNA 100 tephra, probably the Aniakchak eruption which formed the ECR 162 19 

tephra, and perhaps the eruption of Augustine which is the most likely source 20 

of the ECR 100 tephra, may all be large-volume eruptions. However there is no 21 

evidence to suggest that the eruption that formed the ST 12 tephra was of 22 
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particularly large magnitude, and apparent impacts of this tephra are 1 

significant. Therefore the role of eruption size is uncertain.   2 

 A second potentially important factor is the magnitude of the tephra 3 

layer as represented by the thickness of the visible layer or glass shard 4 

concentration (Table 1). Thicker tephra layers are likely to have greater 5 

impacts on peatlands in terms of tephra leachates and greater physical 6 

impacts. Of the tephras associated with greatest impacts here, however, there 7 

is no clear affect of tephra layer magnitude. The thicker visible tephras in 8 

south-central Alaska are not associated with greater apparent impacts than the 9 

cryptotephras in southeast Alaska. It therefore seems unlikely that this factor is 10 

critical.  11 

A further important factor is the distance of the site from the source 12 

eruption.  At greater distances, tephra may have more adsorbed volatiles (Rose 13 

1977, Oskarsson 1980, Smith et al. 1993). Therefore, distal tephras could be 14 

associated with greater impacts than proximal layers regardless of the size of 15 

the layer. While some of the greatest apparent impacts are associated with 16 

tephras at great distance (e.g. ECR 162), impacts of the proximal ST 12 tephra 17 

also appear considerable.  18 

 It is also possible that impacts may be dependent on the season of an 19 

eruption. Modern studies of distal volcanic impacts have shown that plants are 20 

generally less sensitive to eruptions outside the growing season (Zobel & Antos 21 

1997, Hotes et al. 2004). In winter, plants will be senescent and higher rainfall 22 

may serve to rapidly remove volcanic pollutants. Impacts may be particularly 23 
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dependent on snow cover. Snow will stop volcanic products coming into direct 1 

contact with the peat surface. In spring snowmelt, volcanic products contained 2 

in the snow will be heavily diluted and may be removed by surface water flow. 3 

The sites in this study are snow-covered for much of the year; meteorological 4 

data show an average of around five months annual snow cover at Juneau and 5 

Haines and six months at Kenai. It is therefore possible that snow cover is a 6 

significant cause of differential impacts. This factor is difficult to quantify 7 

because there is very limited evidence for the season of ancient eruptions. An 8 

exception to this is the White River Ash (Eastern Lobe), which is correlated 9 

with the LNA 100 layer in this study. West & Donaldson (2002) presented 10 

geomorphological evidence that this tephra was produced in late autumn or 11 

very early winter. If the impacts of winter eruptions are reduced, impacts 12 

across LNA 100 should be minimal but this is actually one of the two tephras 13 

associated with the most conclusive impacts.  However, West & Donaldson 14 

(2002) worked on sites that are both further north and at higher elevation than 15 

Point Lena and it is therefore conceivable that Point Lena could still have been 16 

unfrozen and snow-free at the time of the White River Ash eruption.  17 

 Tephra impacts may also be related to the nature of the site. Any one or 18 

more of site vegetation, hydrology and nutrient status could affect impacts. 19 

However, there is no clear evidence that the nature of the site is a significant 20 

factor. The most distinct apparent impacts were on the Point Lena and Sterling 21 

sites. These peatlands are quite different: Point Lena is an ombrotrophic raised 22 

bog whereas Sterling is a kettle-hole peatland. Different tephras deposited on 23 
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the same peatland can have a quite different scale of impacts. Although ST 12 1 

is associated with impacts, two other tephras of similar thickness (ST 24 and ST 2 

36) in the Sterling profile are not. This result suggests that the variability of 3 

impacts is more likely to be due to some other factor and is not closely related 4 

to the nature of the site.  5 

 A further important factor may be the atmospheric conditions at the 6 

time of eruption. Analogues with anthropogenic air pollutants show the 7 

potential for prevailing meteorological conditions to lead to highly localised 8 

deposition of acidic pollutants (Davies et al. 1984). The interaction of 9 

meteorological conditions and topography could have led to localized heavy 10 

deposition of volcanic acids at some sites. The impacts of the same eruption at 11 

a similar distance could therefore have differed greatly through a region. This 12 

hypothesis could provide an explanation for the different apparent impacts but 13 

is difficult to evaluate directly, especially as for most tephras we do not have 14 

duplicate data from different sites.  15 

In addition to these reasons why different tephras in different sites may 16 

or may not be associated with detectable impacts there are several 17 

methodological issues which may have led to impacts not being identified in 18 

this study. The most significant of these is sampling resolution. The sites 19 

studied here represent a range of peatland types and experience different 20 

climatic conditions. The peatlands therefore have different peat accumulation 21 

rates and these accumulation rates have changed through the Holocene as the 22 

mires have developed. The period of time represented by the sub-samples 23 
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varies from approximately 8 to 50 years. It is therefore possible that the lack of 1 

detectable volcanic impacts in some of these sites is simply because the 2 

sampling resolution is insufficiently high. However, the two tephras which are 3 

associated with the most distinct impacts (ST 12 and LNA 100) are not the sites 4 

with the highest sampling resolution. Low resolution may account for the 5 

failure to detect more distinct impacts in the Eaglecrest site which has a 6 

relatively low accumulation rate but cannot explain the differences within the 7 

other sites. An additional complication is the possibility that accumulation 8 

rates may have varied in response to volcanic impacts (Caseldine et al. 1998, 9 

Blackford and Payne, unpublished data). 10 

Another complication is the complexity of some shard concentration 11 

profiles. In two of the sites (LNA 39 and ST 24) the tephra profile was 12 

multimodal and it was difficult to determine where the isochron should be 13 

located. In another site (MP 27) the tephra layer itself precluded counting 14 

testate amoebae from a critical sample. These problems may hinder the ability 15 

to accurately identify any relationship between the tephra peak and 16 

palaeoecological change.   17 

 The above discussions have assumed that a volcanic impact will be 18 

represented starting coincident with or directly above the tephra layer, but 19 

this may not be the case. Firstly, location of the isochron may be complicated 20 

by post-depositional movement of tephra through the peat.  Experimental work 21 

suggests that it is unlikely for the tephra peak to move (Payne et al. 2005) but 22 

the possibility cannot be totally excluded. Secondly, it is possible that a 23 
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response to volcanic impacts may be lagged behind the event, although there is 1 

no obvious mechanism to support this. A final possibility is for a change in the 2 

palaeoecological record to start below the position of the tephra layer because 3 

amoebae may be alive some distance below the surface (Heal 1962, Corbett 4 

1973) and can respond rapidly to environmental change (Lousier 1974, Clarke 5 

2003). Although these mechanisms are possible, there is no convincing evidence 6 

that they have occurred in this study. In the sites in which distinct impacts 7 

were noted such impacts take place directly coincident with the tephra layer. 8 

In other profiles there are rarely any major changes either just below or just 9 

above the tephra layer.  10 

 Although methodological issues may have led to some problems in 11 

identifying impacts in some sites it does seem clear that there are real 12 

differences in the magnitude of impacts between sites and tephras. The most 13 

likely mechanisms determining why some tephras produce detectable impacts 14 

and others do not would seem to be the meteorological conditions at the time 15 

of eruption and the season of eruption. 16 

 17 

Problems with the humification technique 18 

 19 

The humification results discussed above appear to be unreliable across 20 

visible tephra layers.  Readings that would normally represent significant, 21 

visible colour shifts in the peat stratigraphy were obtained across almost 22 

homogeneous core sections where tephras were present. A possible explanation 23 
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is that some tephra particles were small enough to pass through the filter 1 

paper used in preparing the alkaline extract, and thereby reduced light 2 

transmission values.  The filter paper used retains particles greater than 11 μm 3 

diameter, but particle-size analysis showed a significant proportion of tephra 4 

particles were smaller than this size (Payne & Blackford 2008). To test this 5 

hypothesis, humification was re-measured across one of the tephra layers using 6 

a higher standard of filtration. The ST36 tephra was selected, humification was 7 

measured as described previously but using double quantities (100 ml) of NaOH, 8 

so results are not directly comparable to those presented previously. Samples 9 

were filtered using the standard method (Whatman qualitative 1 filter paper), 10 

using a finer filter paper that retains particles greater than 8 μm diameter 11 

(Whatman 40) and using centrifugation (15 minutes at 4000 RPM). The pattern 12 

of transmission with the standard method shows the same trends as measured 13 

previously (Fig. 4). With centrifugation values were increased by 1-2%, 14 

particularly towards the centre of the sequence and with the finer filter paper 15 

values were elevated by up to 5%, although this was variable over the sequence 16 

(Fig. 4). The elevated values in the centrifuged and finer-filtered samples 17 

strongly suggest that tephra particles penetrated the filter paper used in the 18 

standard method. When the transmission values with the finer filter paper are 19 

corrected for LOI, the large drop in corrected values present with the normal 20 

filter was eliminated (Fig. 4).  21 

The tephra layers in southeast Alaska are much smaller and correction 22 

for LOI makes very little difference to the values. However, in common with 23 
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the humification profiles across the visible tephra layers, most of the profiles 1 

across the cryptotephra layers also show reduced transmission values 2 

coincident with the tephra peaks, consistent with an affect of tephra 3 

penetrating the filter paper. Although tephra shards are less abundant in these 4 

cryptotephra layers, the particle size is smaller, and so a greater proportion of 5 

particles may pass through the filter paper.  In some profiles there are 6 

humification changes which are not consistent with tephra penetrating the 7 

filter paper. However, these changes are the exception- in the majority of 8 

profiles the most distinct change is reduced transmission coincident with the 9 

tephra peak. Several previous studies have measured humification across 10 

tephra layers using this methodology (e.g. Caseldine et al. 1998, Langdon & 11 

Barber 2004, Ellershaw 2004). The results shown here suggest that reduced 12 

transmission values coincident with tephra layers might be due to this 13 

methodological problem rather than a palaeoenvironmental change. 14 

 15 

Volcanic impacts on peatlands: wider implications 16 

 This study provides evidence that volcanoes have the potential to affect 17 

distant peatlands. Apparent impacts can be detected in records of past 18 

microbial communities and, probably, past plant communities. The mechanism 19 

of these impacts is not certain but may relate to deposition of volcanic acids 20 

and other compounds adhering to tephra particles. The scale of impacts is 21 

variable between tephras; such variability may be due to the season of the 22 

eruption and the meteorological conditions prevalent at that time. While 23 
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ecological experimentation can indicate the potential for volcanic eruptions to 1 

affect peatlands (Hotes et al. 2004, Payne et al. 2005), direct observations or 2 

palaeoecological studies are required to show that this actually takes place. 3 

This study provides the most intensive palaeoecological investigation of distal 4 

volcanic impacts on peatlands and the results have several implications for 5 

peatlands and the wider environment.  6 

 Perhaps the most significant possible implications relate to the volcano-7 

climate system. Sulphate additions to peatlands have been shown to suppress 8 

methanogenesis (Gauci and Dise 2002). It is possible that deposition of 9 

volcanogenic sulphate on peatlands could suppress methane emissions, 10 

potentially reducing the atmospheric concentrations of an important 11 

greenhouse gas and reinforcing volcanic induced cooling (Stevenson et al. 2003, 12 

Gauci et al. 2005). This study provides the first direct evidence for the ability 13 

of distal volcanic eruptions to affect peatland microbial communities at a 14 

higher trophic level. Although it is not clear how testate amoebae changes 15 

might relate to changes in sulphate reducing bacteria and methanogenic 16 

archea, the results show microbial community changes associated with tephra 17 

deposition even at very distal locations.  This process could have significant 18 

implications for the volcano-climate system. 19 

 Peatlands constitute a large resource of biodiversity including many 20 

species that are specially adapted to the unique physical environment of 21 

peatlands. Volcanic impacts could potentially have significant implications for 22 

many rare species. If impacts are as severe as implied by some ecological work 23 
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(Payne et al. 2005) then large impacts on sensitive plant populations could 1 

result. Knock-on impacts on insects and vertebrates are also possible which 2 

may have implications for populations of these species. Volcanic impacts might 3 

also have implications for human exploitation of peatlands such as peatland 4 

arboriculture, cranberry, or Sphagnum cultivation.  5 

  6 

Implications for peatland palaeoclimatology 7 

 8 

The results detailed here have important implications for peatland 9 

palaeoecology. Changes across tephra layers suggest changes in key proxy-10 

climate records potentially can be caused by a mechanism independent of 11 

climatic change. It is possible that such changes could be mistaken for a short-12 

term climatic change.  Studies are increasingly using tephra layers to correlate 13 

sequences in different sites (e.g. Landon & Barber 2004, van den Bogaard et al. 14 

2002) and therefore possibly risk mistaking volcanic impacts for simultaneous 15 

environmental changes between sites. While there is no particular indication 16 

that this is the case in the existing studies it is essential that the possibility be 17 

evaluated. Tephra cannot be automatically assumed to be an inert marker in a 18 

palaeoecological sequence. A search for visible tephra layers and cryptotephas 19 

should be undertaken routinely in palaeoecological studies from areas within a 20 

zone of potential tephra deposition. 21 

 22 

Future research directions 23 
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 1 

 Further research is required in a number of areas. As well as replicating 2 

this work in other field areas and with other tephras, studies could also take a 3 

variety of different approaches. Palaeoecological studies could employ a wider 4 

variety of proxies (chironomids, oribatid mites, diatoms, pollen and spores), 5 

geochemical analyses of peat, dendrological records from peatlands. A high as 6 

possible sampling resolution is likely to be essential to identify short-lived 7 

impacts. Modern ecological studies could attempt to monitor the after-effects 8 

of a real volcanic eruption. In regions such as Alaska and Kamchatka small- to 9 

medium-scale volcanic events are relatively frequent and peatlands are 10 

numerous so opportunities for studies of this type arrive with comparative 11 

regularity. The difficulty with this approach is the lack of baseline, pre-12 

eruption data. Because of this problem, and the requirement to study 13 

responses to a broad range of scenarios, experimental studies are also 14 

valuable. Previous studies of this type are limited by their experimental 15 

scenarios; future studies should liase with volcanologists and 16 

tephrochronologists to establish the most likely scenarios for past and future 17 

volcanic impacts. Future studies should also attempt to investigate a wider 18 

range of variables including changes to gas flux, microbial communities, 19 

porewater chemistry and measures of plant health and abundance.  20 
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FIGURES and TABLES 1 

Table 1. Details of tephra layers included in this study. 2 
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6
 shards 

g
-1
 dm 

10 mm (c. 17 

years) 

Payne et al. 

(in press), 

Clague et al. 

(1995), 

Lerbekmo & 
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Campbell 

(1969) 

ST 12 Possible 

Augustine 

Volcano 

c. 250 cal. 

BP 

Age-depth 

model 

Visible tephra 2 mm thick layer 5 mm (c. 12 

years) 

Payne & 

Blackford (in 

press) 

ST 24 Uncertain c.500 cal. 

BP 

Age-depth 

model 

Visible tephra 5 mm thick layer 5 mm (c. 12 

years) 

Payne & 

Blackford (in 

press) 

ST 36 Uncertain c. 760 cal. 

BP 

Age-depth 

model 

Visible tephra 4 mm thick layer 5 mm (c. 12 

years) 

Payne & 

Blackford (in 

press) 

MP 

10 

Augustine 

Volcano 

AD 1883 Historical 

records 

Visible tephra 10 mm thick 

layer 

10 mm (c. 12 

years) 

Payne & 

Blackford (in 

press), Begét 

et al. (1994) 

MP 

27 

Crater 

Peak- Mt. 

Spurr 

c.300 cal. 

BP 

Age-depth 

model and 

correlation to 

Begét et al. 

(1994) 

Visible tephra 7 mm thick layer 10 mm (c. 12 

years) 

Payne & 

Blackford (in 

press), Begét 

et al. (1994) 

MP 

39 

Crater 

Peak- Mt. 

Spurr 

c.430 cal. 

BP 

Age-depth 

model 

Visible tephra 4 mm thick layer 10 mm (c. 12 

years) 

Payne & 

Blackford (in 

press) 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 
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 1 

 2 

 3 

Table 2. Results of ANOSIM comparing testate amoebae communities below and 4 

above the tephra-peak. Showing RANOSIM and P-values (ns= not significant at 5 

P<0.05).  6 

 7 

Tephra RANOSIM 

CHP 33 0.43 (P<0.05) 

ECR 100 0.54 (P<0.05) 

ECR 162 0.67 (P<0.0005) 

LNA 39 ns 

LNA 100 0.68 (P<0.01) 

ST 12 0.50 (P<0.0001) 

ST 24 0.63 (P<0.005) 

ST 36 0.52 (P<0.005) 

MP 10 0.33 (P<0.05) 

MP 27 ns 

MP 39 0.51 (P<0.01) 

 8 

 9 

 10 

 11 
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 2 

 3 

Table 3. Zonation analysis of testate amoebae data across tephra layers using 4 

four methods (see text and Gordon & Birks 1972 for details). Zone boundaries 5 

highlighted in bold lie immediately adjacent to the tephra peak. Samples are 6 

labelled as depth of upper surface therefore a division of 30-31 lies between 7 

the samples from 30-31cm and 31-32cm.  8 

 9 

 CHP33 ECR100 ECR162 LNA39 LNA100 ST12 ST24 ST36 MP10 MP27
1
 MP39 

CONSLINK

2
 

- - - - - - - 32.5-

33 

12-13 - 41-42 

CONISS 30-31 99-100 162-163 43-44 100-

101 

12-

12.5 

23-

23.5 

32.5-

33 

11-12 23-24 41-42 

SPLITLSQ 35-36 99-100 162-163 34-35 100-

101 

12-

12.5 

24.5-

25 

32.5-

33 

11-12 26-28 40-41 

SPLITINF 32-33 99-100 162-163 35-36 100-

101 

12-

12.5 

24.5-

25 

32.5-

33 

11-12 23-24 40-41 

1
 For the MP27 tephra no testate amoebae data were obtained from the 27-28 cm sample. This sample was therefore 10 

excluded from analysis. 11 

2
 For many of the sequences CONSLINK did not give a single, most significant zone boundary.  12 

 13 

 14 

 15 

 16 

 17 

 18 
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 1 

 2 

Table 4. Results of RDA and variance partitioning exercise for testate amoebae 3 

data. Results are shown as percentage variance explained by each combination 4 

of explanatory variables and co-variables. Only significant correlations (P<0.05) 5 

are shown.  6 

 7 

 8 

Source of 

variance 

Explanatory 

variables 

Covariables CHP 33 ECR 

100 

ECR 

162 

LNA 

39 

LNA 100 ST 12 ST 24 ST 

36 

MP 

10 

MP 

27 

MP 

39 

Volcanic 

impacts 

‘Volcanic’ _ 47
 

(P<0.05) 

   64 

(P<0.05) 

33 

(P<0.05) 

34 

(P<0.05) 

    

Volcanic 

impacts 

independent 

of plant and 

humification 

change 

‘Volcanic’ Humification, 

macrofossils 

  30 

(P<0.05) 

 

 27 

(P<0.01) 

26 

(P<0.05) 

     

Volcanic 

impacts 

independent 

of plant, 

humification 

change and 

time 

‘Volcanic’ Humification, 

macrofossils, 

Depth 

    16
 

(P<0.005) 

15
 

(P<0.05) 

     

 9 

 10 

 11 

 12 

 13 
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 1 

Table 5. Changes in selected testate amoebae taxa across tephra layers. ‘↑’ 2 

denotes an increase in abundance, ‘↓ ‘ denotes a decrease in abundance, ‘○’ 3 

denotes no change in abundance, and ‘-’ shows that the taxon is absent or only 4 

present in small quantities. ‘~’ indicates that there is some uncertainty 5 

involved in the judgment.  6 

 Amphitrem

a flavum 

Amphitrema 

stenostoma 

Arcella 

Catinus 

type 

Difflugia spp. Hyalosphenia 

papilio 

Phrygnalla 

Acropodia 

type 

Trigonop

yxis 

arcula 

CHP 33 ↑ - ○ - ○ ~ ↑ ○ 

ECR 100 ↓ ↑ - ↑ ↓ ↑ ↑ 

ECR 162 ~ ↓ ○ - - ○ ~ ↑ - 

LNA 39
$
 ↑ ○ - - - ○ ○ 

LNA 100 ↑ ↑ - ↓ ↑ - ↓ 

ST 12
$
 ↓ - - - ↓ ~ ↑ ~ ↑ 

ST 24 ~ ↑ - - - ○ ○ ○ 

ST 36 - ~ ↓ ↑ - ○ - ~↑ 

MP 10 - - ↑ ↓ - - ○ 

MP 27* - ○ ↑ ↓ - - ↑ 

MP 39 - - ↑ - - ○ ↓ 

* For the MP 27 tephra it was not possible to count testate amoebae for the sample containing the tephra peak. $ For the LNA 39 and 7 

ST 24 tephras there is some uncertainty over the precise location of the tephra peak. 8 

 9 

 10 

 11 
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Figure and Table Captions 2 

 3 

Fig. 1. Location map of the five peatland sites in southern Alaska, also showing 4 

major roads and the settlements of Haines, Skagway, Juneau and Anchorage. 5 

 6 

Fig 2. Summary plots of palaeoecological record across tephra layers showing 7 

glass shard concentration profile produced by the Lycopodium method (shards g 8 

dm-1); colorimetric humification showing raw transmission (dotted line) and 9 

corrected values (solid line); testate amoebae inferred depth to water table 10 

(TI-DWT) and testate amoebae inferred pH (TI-pH) with bootstrapped error 11 

estimates and plant macrofossils in five classes: Sphagnum (S), Monocotyledons 12 

(M), Unidentified organic matter (U) and Other (O).  13 
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 1 

 2 

Fig 3.  Testate amoebae diagrams across the eleven tephra layers showing 3 

percentage of major taxa and position of tephra peak (dotted line).  4 
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 1 

Fig 4. Transmission values across a tephra layer using methods of filtration 2 

(plot a) and transmission values using Whatman 40 filter paper corrected for 3 

loss on ignition (plot b). 4 

 5 

Table 1. Details of tephra layers included in this study. 6 

 7 

Table 2. Results of ANOSIM comparing testate amoebae communities below and 8 

above the tephra-peak. Showing RANOSIM and P-values (ns= not significant at 9 

P<0.05).  10 

 11 

Table 3. Zonation analysis of testate amoebae data across tephra layers using 12 

four methods (see text and Gordon & Birks 1972 for details). Zone boundaries 13 
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highlighted in bold lie immediately adjacent to the tephra peak. Samples are 1 

labelled as depth of upper surface therefore a division of 30-31 lies between 2 

the samples from 30-31cm and 31-32cm.  3 

 4 

Table 4. Results of RDA and variance partitioning exercise for testate amoebae 5 

data. Results are shown as percentage variance explained by each combination 6 

of explanatory variables and co-variables. Only significant correlations (P<0.05) 7 

are shown.  8 

 9 

 10 

 11 

 12 
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 16 

 17 
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