755 research outputs found
GP-SUM. Gaussian Processes Filtering of non-Gaussian Beliefs
This work studies the problem of stochastic dynamic filtering and state
propagation with complex beliefs. The main contribution is GP-SUM, a filtering
algorithm tailored to dynamic systems and observation models expressed as
Gaussian Processes (GP), and to states represented as a weighted sum of
Gaussians. The key attribute of GP-SUM is that it does not rely on
linearizations of the dynamic or observation models, or on unimodal Gaussian
approximations of the belief, hence enables tracking complex state
distributions. The algorithm can be seen as a combination of a sampling-based
filter with a probabilistic Bayes filter. On the one hand, GP-SUM operates by
sampling the state distribution and propagating each sample through the dynamic
system and observation models. On the other hand, it achieves effective
sampling and accurate probabilistic propagation by relying on the GP form of
the system, and the sum-of-Gaussian form of the belief. We show that GP-SUM
outperforms several GP-Bayes and Particle Filters on a standard benchmark. We
also demonstrate its use in a pushing task, predicting with experimental
accuracy the naturally occurring non-Gaussian distributions.Comment: WAFR 2018, 16 pages, 7 figure
Dose calculations in high-dose rate brachytherapy planning for cancer treatment
This article provides the overview of current literature regarding the application of high-dose rate planning and optimization techniques. A summary of commonly used optimization technique known as heuristics method (stochastic and deterministic) is also provided
Fracturing ranked surfaces
Discretized landscapes can be mapped onto ranked surfaces, where every
element (site or bond) has a unique rank associated with its corresponding
relative height. By sequentially allocating these elements according to their
ranks and systematically preventing the occupation of bridges, namely elements
that, if occupied, would provide global connectivity, we disclose that bridges
hide a new tricritical point at an occupation fraction , where
is the percolation threshold of random percolation. For any value of in the
interval , our results show that the set of bridges has a
fractal dimension in two dimensions. In the limit , a self-similar fracture is revealed as a singly connected line
that divides the system in two domains. We then unveil how several seemingly
unrelated physical models tumble into the same universality class and also
present results for higher dimensions
Null Models of Economic Networks: The Case of the World Trade Web
In all empirical-network studies, the observed properties of economic
networks are informative only if compared with a well-defined null model that
can quantitatively predict the behavior of such properties in constrained
graphs. However, predictions of the available null-model methods can be derived
analytically only under assumptions (e.g., sparseness of the network) that are
unrealistic for most economic networks like the World Trade Web (WTW). In this
paper we study the evolution of the WTW using a recently-proposed family of
null network models. The method allows to analytically obtain the expected
value of any network statistic across the ensemble of networks that preserve on
average some local properties, and are otherwise fully random. We compare
expected and observed properties of the WTW in the period 1950-2000, when
either the expected number of trade partners or total country trade is kept
fixed and equal to observed quantities. We show that, in the binary WTW,
node-degree sequences are sufficient to explain higher-order network properties
such as disassortativity and clustering-degree correlation, especially in the
last part of the sample. Conversely, in the weighted WTW, the observed sequence
of total country imports and exports are not sufficient to predict higher-order
patterns of the WTW. We discuss some important implications of these findings
for international-trade models.Comment: 39 pages, 46 figures, 2 table
Water Supply Interruptions and Suspected Cholera Incidence: A Time-Series Regression in the Democratic Republic of the Congo
Data that underpins a publication on water supply interruptions and suspected Cholera incidenc
Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials
Recent years witnessed a rapid growth of interest of scientific and
engineering communities to thermal properties of materials. Carbon allotropes
and derivatives occupy a unique place in terms of their ability to conduct
heat. The room-temperature thermal conductivity of carbon materials span an
extraordinary large range - of over five orders of magnitude - from the lowest
in amorphous carbons to the highest in graphene and carbon nanotubes. I review
thermal and thermoelectric properties of carbon materials focusing on recent
results for graphene, carbon nanotubes and nanostructured carbon materials with
different degrees of disorder. A special attention is given to the unusual size
dependence of heat conduction in two-dimensional crystals and, specifically, in
graphene. I also describe prospects of applications of graphene and carbon
materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe
Growth landscape formed by perception and import of glucose in yeast
An important challenge in systems biology is to quantitatively describe microbial growth using a few measurable parameters that capture the essence of this complex phenomenon. Two key events at the cell membrane—extracellular glucose sensing and uptake—initiate the budding yeast’s growth on glucose. However, conventional growth models focus almost exclusively on glucose uptake. Here we present results from growth-rate experiments that cannot be explained by focusing on glucose uptake alone. By imposing a glucose uptake rate independent of the sensed extracellular glucose level, we show that despite increasing both the sensed glucose concentration and uptake rate, the cell’s growth rate can decrease or even approach zero. We resolve this puzzle by showing that the interaction between glucose perception and import, not their individual actions, determines the central features of growth, and characterize this interaction using a quantitative model. Disrupting this interaction by knocking out two key glucose sensors significantly changes the cell’s growth rate, yet uptake rates are unchanged. This is due to a decrease in burden that glucose perception places on the cells. Our work shows that glucose perception and import are separate and pivotal modules of yeast growth, the interaction of which can be precisely tuned and measured.National Institutes of Health (U.S.). Pioneer AwardNatural Sciences and Engineering Research Council of Canada (NSERC). Graduate Fellowshi
The limited prosocial effects of meditation: A systematic review and meta-analysis
Many individuals believe that meditation has the capacity to not only alleviate mental-illness but to improve prosociality. This article systematically reviewed and meta-analysed the effects of meditation interventions on prosociality in randomized controlled trials of healthy adults. Five types of social behaviours were identified: compassion, empathy, aggression, connectedness and prejudice. Although we found a moderate increase in prosociality following meditation, further analysis indicated that this effect was qualified by two factors: type of prosociality and methodological quality. Meditation interventions had an effect on compassion and empathy, but not on aggression, connectedness or prejudice. We further found that compassion levels only increased under two conditions: when the teacher in the meditation intervention was a co-author in the published study; and when the study employed a passive (waiting list) control group but not an active one. Contrary to popular beliefs that meditation will lead to prosocial changes, the results of this meta-analysis showed that the effects of meditation on prosociality were qualified by the type of prosociality and methodological quality of the study. We conclude by highlighting a number of biases and theoretical problems that need addressing to improve quality of research in this area
Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease
Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
- …
