124 research outputs found

    A novel small molecule target in human airway smooth muscle for potential treatment of obstructive lung diseases: a staged high-throughput biophysical screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A newly identified mechanism of smooth muscle relaxation is the interaction between the small heat shock protein 20 (HSP20) and 14-3-3 proteins. Focusing upon this class of interactions, we describe here a novel drug target screening approach for treating airflow obstruction in asthma.</p> <p>Methods</p> <p>Using a high-throughput fluorescence polarization (FP) assay, we screened a library of compounds that could act as small molecule modulators of HSP20 signals. We then applied two quantitative, cell-based biophysical methods to assess the functional efficacy of these molecules and rank-ordered their abilities to relax isolated human airway smooth muscle (ASM). Scaling up to the level of an intact tissue, we confirmed in a concentration-responsive manner the potency of the cell-based hit compounds.</p> <p>Results</p> <p>Among 58,019 compound tested, 268 compounds caused 20% or more reduction of the polarized emission in the FP assay. A small subset of these primary screen hits, belonging to two scaffolds, caused relaxation of isolated ASM cell <it>in vitro </it>and attenuated active force development of intact tissue <it>ex vivo</it>.</p> <p>Conclusions</p> <p>This staged biophysical screening paradigm provides proof-of-principle for high-throughput and cost-effective discovery of new small molecule therapeutic agents for obstructive lung diseases.</p

    Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine.

    Get PDF
    BACKGROUND: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10. METHODS AND FINDINGS: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤ 2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates. CONCLUSIONS: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation

    Impact of Capsular Switch on Invasive Pneumococcal Disease Incidence in a Vaccinated Population

    Get PDF
    BACKGROUND: Despite the dramatic decline in the incidence of invasive pneumococcal disease (IPD) observed since the introduction of conjugate vaccination, it is feared that several factors may undermine the future effectiveness of the vaccines. In particular, pathogenic pneumococci may switch their capsular types and evade vaccine-conferred immunity. METHODOLOGY/PRINCIPAL FINDINGS: Here, we first review the literature and summarize the available epidemiological data on capsular switch for S. pneumoniae. We estimate the weekly probability that a persistently carried strain may switch its capsule from four studies, totalling 516 children and 6 years of follow-up, at 1.5x10(-3)/week [4.6x10(-5)-4.8x10(-3)/week]. There is not enough power to assess an increase in this frequency in vaccinated individuals. Then, we use a mathematical model of pneumococcal transmission to quantify the impact of capsular switch on the incidence of IPD in a vaccinated population. In this model, we investigate a wide range of values for the frequency of vaccine-selected capsular switch. Predictions show that, with vaccine-independent switching only, IPD incidence in children should be down by 48% 5 years after the introduction of the vaccine with high coverage. Introducing vaccine-selected capsular switch at a frequency up to 0.01/week shows little effect on this decrease; yearly, at most 3 excess cases of IPD per 10(6) children might occur due to switched pneumococcal strains. CONCLUSIONS: Based on all available data and model predictions, the existence of capsular switch by itself should not impact significantly the efficacy of pneumococcal conjugate vaccination on IPD incidence. This optimistic result should be tempered by the fact that the selective pressure induced by the vaccine is currently increasing along with vaccine coverage worldwide; continued surveillance of pneumococcal populations remains of the utmost importance, in particular during clinical trials of the new conjugate vaccines

    Immediate thoracotomy for penetrating injuries: Ten years' experience at a Dutch level I trauma center

    Get PDF
    Background: An emergency department thoracotomy (EDT) or an emergency thoracotomy (ET) in the operating theater are both beneficial in selected patients following thoracic penetrating injuries. Since outcome-descriptive European studies are lacking, the aim of this retrospective study was to evaluate ten years of experience at a Dutch level I trauma center. Method: Data on patients who underwent an immediate thoracotomy after sustaining a penetrating thoracic injury between October 2000 and January 2011 were collected from the trauma registry and hospital files. Descriptive and univariate analyses were performed. Results: Among 56 patients, 12 underwent an EDT and 44 an ET. Forty-six patients sustained one or multiple stab wounds, versus ten with one or multiple gunshot wounds. Patients who had undergone an EDT had a lower GCS (p < 0. 001), lower pre-hospital RTS and hospital triage RTS (p < 0. 001 and p = 0. 009, respectively), and a lower SBP (p = 0. 038). A witnessed loss of signs of life generally occurred in EDT patients and was accompanied by 100 % mortality. Survival following EDT was 25 %, which was significantly lower than in the ET group (75 %; p = 0. 002). Survivors had lower ISS (p = 0. 011), lower rates of pre-hospital (p = 0. 031) and hospital (p = 0. 003) hemodynamic instability, and a lower prevalence of concomitant abdominal injury (p = 0. 002). Conclusion: The overall survival rate in our study was 64 %. The outcome of immediate thoracotomy performed in this level I trauma center was similar to those obtained in high-incidence regions like the US and South Africa. This suggests that trauma units where immediate thoracotomies are not part of the daily routine can achieve similar results, if properly trained

    Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The <it>Schistosoma mansoni </it>genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the <it>S. mansoni </it>predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets.</p> <p>Results</p> <p>We have identified 252 ePKs, which corresponds to 1.9% of the <it>S. mansoni </it>predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that <it>S. mansoni </it>has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in <it>S. mansoni </it>or belong to an expanded family in this parasite. Only 16 <it>S. mansoni </it>ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite.</p> <p>Conclusions</p> <p>Our approach has improved the functional annotation of 40% of <it>S. mansoni </it>ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of <it>S. mansoni </it>in response to diverse environments during the parasite development, vector interaction, and host infection.</p

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore