4,655 research outputs found

    Low‐cost tools mitigate climate change during reproduction in an endangered marine ectotherm

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData Availability Statement: Data available via the Dryad Digital Repository https://doi.org/10.5061/dryad.3r2280gfq. (Clarke et al., 2021)The impacts of anthropogenic climate change will be most dramatic for species that live in narrow thermal niches, such as reptiles. Given the imminent threat to biodiversity, and that actions to reduce carbon emissions are not yet sufficient, it is important that a sound evidence base of potential mitigation options is available for conservation managers. Successful incubation and production of male sea turtle hatchlings is threatened by increased global temperatures (sex is determined by the temperature at which eggs incubate). Here we test two conservation tools to reduce incubation temperatures: clutch splitting and clutch shading, on a nesting loggerhead turtle (Caretta caretta) population in the Eastern Atlantic Ocean. During the thermosensitive period of incubation, split and shaded clutches were both 1.00 ˚C cooler than control nests. Clutch splitting (mean: 45 eggs) reduced nest temperatures by reducing metabolic heating during incubation compared to controls (mean: 92 eggs). Modelled primary sex ratios differed between nest treatments, with 1.50 % (± 6 % S.E.) females produced in shaded nests, 45.00 % (± 7 % S.E.) females in split nests and 69.00 % (± 6% S.E.) females in controls. Neither treatment affected hatchling size, success, mass or vigour. When clutch splitting was repeated two years later, hatch success was higher in split clutches compared to controls. Synthesis and Applications: Clutch splitting and clutch shading successfully altered the thermal profile of incubating turtle nests. When there is sufficient knowledge to better understand the effects of intervention on fundamental population demographics, they will be useful for reducing incubation temperatures in sea turtle nests, potentially increasing nest survival and male hatchling production. The effect of clutch splitting in reducing nest temperature was lower relative to clutch shading, but requires significantly less funding, materials and specialist skill, key factors for management of turtle rookeries that are often in remote, resource‐limited areas.Worldwide Fund for NatureWAVE Foundation of Newport Aquariu

    The age-metallicity structure of the Milky Way disc using APOGEE

    Get PDF
    The measurement of the structure of stellar populations in the Milky Way disc places fundamental constraints on models of galaxy formation and evolution. Previously, the disc’s structure has been studied in terms of populations defined geometrically and/or chemically, but a decomposition based on stellar ages provides a more direct connection to the history of the disc, and stronger constraint on theory. Here, we use positions, abundances and ages for 31 244 red giant branch stars from the Sloan Digital Sky Survey (SDSS)-APOGEE survey, spanning 3 < Rgc < 15 kpc, to dissect the disc into mono-age and mono-[Fe/H] populations at low and high [α/Fe]. For each population, with age < 2 Gyr and [Fe/H] < 0.1 dex, we measure the structure and surface-mass density contribution. We find that low [α/Fe] mono-age populations are fit well by a broken exponential, which increases to a peak radius and decreases thereafter. We show that this profile becomes broader with age, interpreted here as a new signal of disc heating and radial migration. High [α/Fe] populations are well fit as single exponentials within the radial range considered, with an average scalelength of 1.9 ± 0.1 kpc. We find that the relative contribution of high to low [α/Fe] populations at R0 is fïżœ = 18 per cent ± 5 per cent; high [α/Fe] contributes most of the mass at old ages, and low [α/Fe] at young ages. The low and high [α/Fe] populations overlap in age at intermediate [Fe/H], although both contribute mass at R0 across the full range of [Fe/H]. The mass-weighted scaleheight hZ distribution is a smoothly declining exponential function. High [α/Fe] populations are thicker than low [α/Fe], and the average hZ increases steadily with age, between 200 and 600 pc

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Composite Leptoquarks at the LHC

    Get PDF
    If electroweak symmetry breaking arises via strongly-coupled physics, the observed suppression of flavour-changing processes suggests that fermion masses should arise via mixing of elementary fermions with composite fermions of the strong sector. The strong sector then carries colour charge, and may contain composite leptoquark states, arising either as TeV scale resonances, or even as light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to colour, get a mass of the order of several hundred GeV, beyond the reach of current searches at the Tevatron. The same generic mechanism that suppresses flavour-changing processes suppresses leptoquark-mediated rare processes, making it conceivable that the many stringent constraints may be evaded. The leptoquarks couple predominantly to third-generation quarks and leptons, and the prospects for discovery at LHC appear to be good. As an illustration, a model based on the Pati-Salam symmetry is described, and its embedding in models with a larger symmetry incorporating unification of gauge couplings, which provide additional motivation for leptoquark states at or below the TeV scale, is discussed.Comment: 10 pp, version to appear in JHE

    Nestedness across biological scales

    Get PDF
    This is the final published version. Available from Public Library of Science via the DOI in this record.All data sets are available for download in the repository https:// bitbucket.org/maucantor/unodf_analyses/src.Biological networks pervade nature. They describe systems throughout all levels of biological organization, from molecules regulating metabolism to species interactions that shape ecosystem dynamics. The network thinking revealed recurrent organizational patterns in complex biological systems, such as the formation of semi-independent groups of connected elements (modularity) and non-random distributions of interactions among elements. Other structural patterns, such as nestedness, have been primarily assessed in ecological networks formed by two non-overlapping sets of elements; information on its occurrence on other levels of organization is lacking. Nestedness occurs when interactions of less connected elements form proper subsets of the interactions of more connected elements. Only recently these properties began to be appreciated in one-mode networks (where all elements can interact) which describe a much wider variety of biological phenomena. Here, we compute nestedness in a diverse collection of one-mode networked systems from six different levels of biological organization depicting gene and protein interactions, complex phenotypes, animal societies, metapopulations, food webs and vertebrate metacommunities. Our findings suggest that nestedness emerge independently of interaction type or biological scale and reveal that disparate systems can share nested organization features characterized by inclusive subsets of interacting elements with decreasing connectedness. We primarily explore the implications of a nested structure for each of these studied systems, then theorize on how nested networks are assembled. We hypothesize that nestedness emerges across scales due to processes that, although system-dependent, may share a general compromise between two features: specificity (the number of interactions the elements of the system can have) and affinity (how these elements can be connected to each other). Our findings suggesting occurrence of nestedness throughout biological scales can stimulate the debate on how pervasive nestedness may be in nature, while the theoretical emergent principles can aid further research on commonalities of biological networks.Conselho Nacional de Desenvolvimento Científico e TecnológicoSão Paulo Research FoundationKillam TrustsThe Brazilian Federal Agency for Support and Evaluation of Graduate Education within the Ministry of Education of BrazilFundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarin

    Low‐cost tools mitigate climate change during reproduction in an endangered marine ectotherm

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData Availability Statement: Data available via the Dryad Digital Repository https://doi.org/10.5061/dryad.3r2280gfq. (Clarke et al., 2021)The impacts of anthropogenic climate change will be most dramatic for species that live in narrow thermal niches, such as reptiles. Given the imminent threat to biodiversity, and that actions to reduce carbon emissions are not yet sufficient, it is important that a sound evidence base of potential mitigation options is available for conservation managers. Successful incubation and production of male sea turtle hatchlings is threatened by increased global temperatures (sex is determined by the temperature at which eggs incubate). Here we test two conservation tools to reduce incubation temperatures: clutch splitting and clutch shading, on a nesting loggerhead turtle (Caretta caretta) population in the Eastern Atlantic Ocean. During the thermosensitive period of incubation, split and shaded clutches were both 1.00 ˚C cooler than control nests. Clutch splitting (mean: 45 eggs) reduced nest temperatures by reducing metabolic heating during incubation compared to controls (mean: 92 eggs). Modelled primary sex ratios differed between nest treatments, with 1.50 % (± 6 % S.E.) females produced in shaded nests, 45.00 % (± 7 % S.E.) females in split nests and 69.00 % (± 6% S.E.) females in controls. Neither treatment affected hatchling size, success, mass or vigour. When clutch splitting was repeated two years later, hatch success was higher in split clutches compared to controls. Synthesis and Applications: Clutch splitting and clutch shading successfully altered the thermal profile of incubating turtle nests. When there is sufficient knowledge to better understand the effects of intervention on fundamental population demographics, they will be useful for reducing incubation temperatures in sea turtle nests, potentially increasing nest survival and male hatchling production. The effect of clutch splitting in reducing nest temperature was lower relative to clutch shading, but requires significantly less funding, materials and specialist skill, key factors for management of turtle rookeries that are often in remote, resource‐limited areas.Worldwide Fund for NatureWAVE Foundation of Newport Aquariu

    Adjunctive liraglutide treatment in patients with persistent or recurrent type 2 diabetes after metabolic surgery (GRAVITAS): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Many patients with type 2 diabetes do not achieve sustained diabetes remission after metabolic (bariatric) surgery for the treatment of obesity. Liraglutide, a glucagon-like peptide-1 analogue, improves glycaemic control and reduces bodyweight in patients with type 2 diabetes. Our aim was to assess the safety and efficacy of liraglutide 1·8 mg in patients with persistent or recurrent type 2 diabetes after metabolic surgery. Methods In the GRAVITAS randomised double-blind, placebo-controlled trial, we enrolled adults who had undergone Roux-en-Y gastric bypass or vertical sleeve gastrectomy and had persistent or recurrent type 2 diabetes with HbA1c levels higher than 48 mmol/mol (6·5%) at least 1 year after surgery from five hospitals in London, UK. Participants were randomly assigned (2:1) via a computer-generated sequence to either subcutaneous liraglutide 1·8 mg once daily or placebo, both given together with a reduced-calorie diet, aiming for a 500 kcal per day deficit from baseline energy intake, and increased physical activity. The primary outcome was the change in HbA1c from baseline to the end of the study period at 26 weeks, assessed in patients who completed the trial. Safety was assessed in the safety analysis population, consisting of all participants who received either liraglutide or placebo. This trial is registered with EudraCT, number 2014-003923-23, and the ISRCTN registry, number ISRCTN13643081. Findings Between Jan 29, 2016, and May 2, 2018, we assigned 80 patients to receive either liraglutide (n=53) or placebo (n=27). 71 (89%) participants completed the study and were included in the principal complete-cases analysis. In a multivariable linear regression analysis, with baseline HbA1c levels and surgery type as covariates, liraglutide treatment was associated with a difference of −13·3 mmol/mol (−1·22%, 95% CI −19·7 to −7·0; p=0·0001) in HbA1c change from baseline to 26 weeks, compared with placebo. Type of surgery had no significant effect on the outcome. 24 (45%) of 53 patients assigned to liraglutide and 11 (41%) of 27 assigned to placebo reported adverse effects: these were mainly gastrointestinal and in line with previous experience with liraglutide. There was one death during the study in a patient assigned to the placebo group, which was considered unrelated to study treatment. Interpretation These findings support the use of adjunctive liraglutide treatment in patients with persistent or recurrent type 2 diabetes after metabolic surgery

    The factors driving evolved herbicide resistance at a national scale

    Get PDF
    Repeated use of xenobiotic chemicals has selected for the rapid evolution of resistance threatening health and food security at a global scale. Strategies for preventing the evolution of resistance include cycling and mixtures of chemicals and diversification of management. We currently lack large-scale studies that evaluate the efficacy of these different strategies for minimizing the evolution of resistance. Here we use a national scale dataset of occurrence of the weed Alopecurus myosuroides (Blackgrass) in the UK to address this. Weed densities are correlated with assays of evolved resistance, supporting the hypothesis that resistance is driving weed abundance at a national scale. Resistance was correlated with the frequency of historical herbicide applications suggesting that evolution of resistance is primarily driven by intensity of exposure to herbicides, but was unrelated directly to other cultural techniques. We find that populations resistant to one herbicide are likely to show resistance to multiple herbicide classes. Finally, we show that the economic costs of evolved resistance are considerable: loss of control through resistance can double the economic costs of weeds. This research highlights the importance of managing threats to food production and healthcare systems using an evolutionarily informed approach in a proactive not reactive manner

    Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation

    Get PDF
    Genetically modified Lactococcus lactis, non-pathogenic bacteria expressing the FNIII7-10 fibronectin fragment as a protein membrane have been used to create a living biointerface between synthetic materials and mammalian cells. This FNIII7-10 fragment comprises the RGD and PHSRN sequences of fibronectin to bind α5ÎČ1 integrins and triggers signalling for cell adhesion, spreading and differentiation. We used L. lactis strain to colonize material surfaces and produce stable biofilms presenting the FNIII7-10 fragment readily available to cells. Biofilm density is easily tunable and remains stable for several days. Murine C2C12 myoblasts seeded over mature biofilms undergo bipolar alignment and form differentiated myotubes, a process triggered by the FNIII7-10 fragment. This biointerface based on living bacteria can be further modified to express any desired biochemical signal, establishing a new paradigm in biomaterial surface functionalisation for biomedical applications

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure
    • 

    corecore