102 research outputs found

    Preoperative bowel stimulation prior to ileostomy closure to restore bowel function more quickly and improve postoperative outcomes: a systematic review

    Get PDF
    Aim Closure of a diverting ileostomy following restorative surgery is often associated with significant short‐term morbidity and variable long‐term bowel function. The aim of this systematic review was to investigate if preoperative stimulation of the defunctioned bowel restores bowel function more quickly after ileostomy closure and improves postoperative outcomes when compared with standard preoperative care. Method MEDLINE, Embase, CENTRAL, Google Scholar and ClinicalTrials.gov were searched for studies evaluating preoperative bowel stimulation in patients with a temporary ileostomy after low anterior resection or ileal pouch–anal anastomosis, regardless of their design, publication type or language. Study selection, data extraction and study assessment were performed by one reviewer and verified by another. Study results were synthesized narratively. The GRADE approach was used to assess the quality of evidence. Results Eight studies involving a total of 267 participants were included. The studies had a moderate to high risk of bias and were of varying methodological quality. Preoperative stimulation of the defunctioned bowel reduced the time to postoperative restoration of bowel function and the length of hospital stay when compared with standard preoperative care. Other functional outcomes and postoperative complication rates were similar to those of standard preoperative care. The overall quality of evidence was very low. Conclusion Despite these promising early results, there is insufficient high‐quality evidence to recommend routine implementation of preoperative bowel stimulation in clinical practice. Nevertheless, there is no evidence suggesting that the intervention worsens outcomes or is unsafe, paving the way for rigorous assessment of effectiveness, acceptability and cost‐effectiveness within the context of well‐designed clinical trials

    Bone marrow MSC from pediatric patients with B-ALL highly immunosuppress T-cell responses but do not compromise CD19-CAR T-cell activity

    Get PDF
    Altres ajuts Funding Financial support for this work was obtained from the Obra Social La Caixa (LCF/PR/HR19/52160011), the Leo Messi Foundation, and the 'Heroes hasta la médula' initiative to PM. SRZ was supported by a Marie Sklodowska Curie Fellowship (GA 795833). MV is supported by a Juan de la Cierva fellowship from the MINECO. PM is an investigator of the Spanish Cell Therapy cooperative network (TERCEL).Background Although adoptive transfer of CD19-directed chimeric antigen receptor (CAR) T-cells (CD19-CAR T-cells) achieves high rates of complete response in patients with B-cell acute lymphoblastic leukemia (B-ALL), relapse is common. Bone marrow (BM) mesenchymal stem/stromal cells (BM-MSC) are key components of the hematopoietic niche and are implicated in B-ALL pathogenesis and therapy resistance. MSC exert an immunosuppressive effect on T-cells; however, their impact on CD19-CAR T-cell activity is understudied. Methods We performed a detailed characterization of BM-MSC from pediatric patients with B-ALL (B-ALL BM-MSC), evaluated their immunomodulatory properties and their impact on CD19-CAR T-cell activity in vitro using microscopy, qRT-PCR, ELISA, flow cytometry analysis and in vivo using a preclinical model of severe colitis and a B-ALL xenograft model. Results While B-ALL BM-MSC were less proliferative than those from age-matched healthy donors (HD), the morphology, immunophenotype, differentiation potential and chemoprotection was very similar. Likewise, both BM-MSC populations were equally immunosuppressive in vitro and anti-inflammatory in an in vivo model of severe colitis. Interestingly, BM-MSC failed to impair CD19-CAR T-cell cytotoxicity or cytokine production in vitro using B-ALL cell lines and primary B-ALL cells. Finally, the growth of NALM6 cells was controlled in vivo by CD19-CAR T-cells irrespective of the absence/presence of BM-MSC. Conclusions Collectively, our data demonstrate that pediatric B-ALL and HD BM-MSC equally immunosuppress T-cell responses but do not compromise CD19-CAR T-cell activity

    CD133-directed CAR T-cells for MLL Leukemia: On-Target, Off-Tumor Myeloablative Toxicity

    Get PDF
    Acknowledgements: We thank the Interfant treatment protocol and local physicians for contributing patient samples: Dr. Ronald W Stam (Princess Maxima Centre, Utrech), Dr. Mireia Camos and Dr. Jose Luis Fuster (Spanish Society of Pediatric Hematoncology), Dr. Paola Ballerini (A. Trousseau Hospital, Paris). We also thank Prof. Paresh Vyas (Oxford Univeristy, UK) and Prof. Kajsa Paulsson (Lund University, Sweden) for facilitating access to their RNA-seq database. This work has been supported by the European Research Council (CoG-2014-646903, PoC-2018-811220) to PM, the Spanish Ministry of Economy and Competitiveness (MINECO, SAF-SAF2016-80481-R, BIO2017-85364-R) to PM and EE, the Generalitat de Catalunya (SGR330, SGR102 and PERIS) to PM and EE, the Spanish Association against cancer (AECC-CI-2015) to CB, and the Health Institute Carlos III (ISCIII/FEDER, PI14-01191) to CB. PM also acknowledges financial support from the Obra Social La Caixa-FundaciĂČ Josep Carreras. SRZ and TV are supported by a Marie Curie fellowships. OM is supported by the Catalan Government through a Beatriu de Pinos fellowship. MB is supported by MINECO through a PhD scholarship. PM is an investigator of the Spanish Cell Therapy cooperative network (TERCEL)

    Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope

    Get PDF
    Altres ajuts: Funding This work was supported by the Obra Social La Caixa (LCF/PR/HR19/52160011), the Spanish Cancer Association and Leo Messi Foundation to PM.Background There are few therapeutic options available for patients with B-cell acute lymphoblastic leukemia (B-ALL) relapsing as CD19 - either after chemotherapy or CD19-targeted immunotherapies. CD22-chimeric antigen receptor (CAR) T cells represent an attractive addition to CD19-CAR T cell therapy because they will target both CD22 + CD19 - B-ALL relapses and CD19 - preleukemic cells. However, the immune escape mechanisms from CD22-CAR T cells, and the potential contribution of the epitope binding of the anti-CD22 single-chain variable fragment (scFv) remain understudied. Methods Here, we have developed and comprehensively characterized a novel CD22-CAR (clone hCD22.7) targeting a membrane-distal CD22 epitope and tested its cytotoxic effects against B-ALL cells both in in vitro and in vivo assays. Results Conformational epitope mapping, cross-blocking, and molecular docking assays revealed that the hCD22.7 scFv is a high-affinity binding antibody which specifically binds to the ESTKDGKVP sequence, located in the Ig-like V-type domain, the most distal domain of CD22. We observed efficient killing of B-ALL cells in vitro, although the kinetics were dependent on the level of CD22 expression. Importantly, we show an efficient in vivo control of patients with B-ALL derived xenografts with diverse aggressiveness, coupled to long-term hCD22.7-CAR T cell persistence. Remaining leukemic cells at sacrifice maintained full expression of CD22, ruling out CAR pressure-mediated antigen loss. Finally, the immunogenicity capacity of this hCD22.7-scFv was very similar to that of other CD22 scFv previously used in adoptive T cell therapy. Conclusions We report a novel, high-affinity hCD22.7 scFv which targets a membrane-distal epitope of CD22. 4-1BB-based hCD22.7-CAR T cells efficiently eliminate clinically relevant B- CD22 high and CD22 low ALL primary samples in vitro and in vivo. Our study supports the clinical translation of this hCD22.7-CAR as either single or tandem CD22-CD19-CAR for both naive and anti-CD19-resistant patients with B-ALL

    Nationwide Surveillance of Influenza during the Pandemic (2009–10) and Post-Pandemic (2010–11) Periods in Taiwan

    Get PDF
    INTRODUCTION: Although WHO declared the world moving into the post-pandemic period on August 10, 2010, influenza A(H1N1) 2009 virus continued to circulate globally. Its impact was expected to continue during the 2010-11 influenza season. This study describes the nationwide surveillance findings of the pandemic and post-pandemic influenza periods in Taiwan and assesses the impact of influenza A(H1N1) 2009 during the post-pandemic period. METHODS: The Influenza Laboratory Surveillance Network consisted of 12 contract laboratories for collecting and testing samples with acute respiratory tract infections. Surveillance of emergency room visits and outpatient department visits for influenza-like illness (ILI) were conducted using the Real-Time Outbreak and Disease Surveillance system and the National Health Insurance program data, respectively. Hospitalized cases with severe complications and deaths were reported to the National Notifiable Disease Surveillance System. RESULTS: During the 2009-10 influenza season, pandemic A(H1N1) 2009 was the predominant circulating strain and caused 44 deaths. However, the 2010-11 influenza season began with A(H3N2) being the predominant circulating strain, changing to A(H1N1) 2009 in December 2010. Emergency room and outpatient department ILI surveillance displayed similar trends. By March 31, 2011, there were 1,751 cases of influenza with severe complications; 50.1% reported underlying diseases. Of the reported cases, 128 deaths were associated with influenza. Among these, 93 (72.6%) were influenza A(H1N1) 2009 and 30 (23.4%) A(H3N2). Compared to the pandemic period, during the immediate post-pandemic period, increased number of hospitalizations and deaths were observed, and the patients were consistently older. CONCLUSIONS: Reemergence of influenza A(H1N1) 2009 during the 2010-11 influenza season had an intense activity with age distribution shift. To further mitigate the impact of future influenza epidemics, Taiwan must continue its multifaceted influenza surveillance systems, remain flexible with antiviral use policies, and revise the vaccine policies to include the population most at risk

    Evidence for Induction of Integron-Based Antibiotic Resistance by the SOS Response in a Clinical Setting

    Get PDF
    Bacterial resistance to ÎČ-lactams may rely on acquired ÎČ-lactamases encoded by class 1 integron-borne genes. Rearrangement of integron cassette arrays is mediated by the integrase IntI1. It has been previously established that integrase expression can be activated by the SOS response in vitro, leading to speculation that this is an important clinical mechanism of acquiring resistance. Here we report the first in vivo evidence of the impact of SOS response activated by the antibiotic treatment given to a patient and its output in terms of resistance development. We identified a new mechanism of modulation of antibiotic resistance in integrons, based on the insertion of a genetic element, the gcuF1 cassette, upstream of the integron-borne cassette blaOXA-28 encoding an extended spectrum ÎČ-lactamase. This insertion creates the fused protein GCUF1-OXA-28 and modulates the transcription, the translation, and the secretion of the ÎČ-lactamase in a Pseudomonas aeruginosa isolate (S-Pae) susceptible to the third generation cephalosporin ceftazidime. We found that the metronidazole, not an anti-pseudomonal antibiotic given to the first patient infected with S-Pae, triggered the SOS response that subsequently activated the integrase IntI1 expression. This resulted in the rearrangement of the integron gene cassette array, through excision of the gcuF1 cassette, and the full expression the ÎČ-lactamase in an isolate (R-Pae) highly resistant to ceftazidime, which further spread to other patients within our hospital. Our results demonstrate that in human hosts, the antibiotic-induced SOS response in pathogens could play a pivotal role in adaptation process of the bacteria

    Bacteria-inducing legume nodules involved in the improvement of plant growth, health and nutrition

    Get PDF
    Bacteria-inducing legume nodules are known as rhizobia and belong to the class Alphaproteobacteria and Betaproteobacteria. They promote the growth and nutrition of their respective legume hosts through atmospheric nitrogen fixation which takes place in the nodules induced in their roots or stems. In addition, rhizobia have other plant growth-promoting mechanisms, mainly solubilization of phosphate and production of indoleacetic acid, ACC deaminase and siderophores. Some of these mechanisms have been reported for strains of rhizobia which are also able to promote the growth of several nonlegumes, such as cereals, oilseeds and vegetables. Less studied are the mechanisms that have the rhizobia to promote the plant health; however, these bacteria are able to exert biocontrol of some phytopathogens and to induce the plant resistance. In this chapter, we revised the available data about the ability of the legume nodule-inducing bacteria for improving the plant growth, health and nutrition of both legumes and nonlegumes. These data showed that rhizobia meet all the requirements of sustainable agriculture to be used as bio-inoculants allowing the total or partial replacement of chemicals used for fertilization or protection of crops

    Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects

    Get PDF
    The global population is continuously increasing and is expected to reach nine billion by 2050. This huge population pressure will lead to severe shortage of food, natural resources and arable land. Such an alarming situation is most likely to arise in developing countries due to increase in the proportion of people suffering from protein and micronutrient malnutrition. Pulses being a primary and affordable source of proteins and minerals play a key role in alleviating the protein calorie malnutrition, micronutrient deficiencies and other undernourishment-related issues. Additionally, pulses are a vital source of livelihood generation for millions of resource-poor farmers practising agriculture in the semi-arid and sub-tropical regions. Limited success achieved through conventional breeding so far in most of the pulse crops will not be enough to feed the ever increasing population. In this context, genomics-assisted breeding (GAB) holds promise in enhancing the genetic gains. Though pulses have long been considered as orphan crops, recent advances in the area of pulse genomics are noteworthy, e.g. discovery of genome-wide genetic markers, high-throughput genotyping and sequencing platforms, high-density genetic linkage/QTL maps and, more importantly, the availability of whole-genome sequence. With genome sequence in hand, there is a great scope to apply genome-wide methods for trait mapping using association studies and to choose desirable genotypes via genomic selection. It is anticipated that GAB will speed up the progress of genetic improvement of pulses, leading to the rapid development of cultivars with higher yield, enhanced stress tolerance and wider adaptability

    Grand challenges in entomology: Priorities for action in the coming decades

    Get PDF
    Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter ‘members’) of the UK-based Royal Entomological Society (RES). A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial priorities, which were subsequently ranked during an online workshop involving 37 participants. The outcome was a set of 61 priority challenges within four groupings of related themes: (i) ‘Fundamental Research’ (themes: Taxonomy, ‘Blue Skies’ [defined as research ideas without immediate practical application], Methods and Techniques); (ii) ‘Anthropogenic Impacts and Conservation’ (themes: Anthropogenic Impacts, Conservation Options); (iii) ‘Uses, Ecosystem Services and Disservices’ (themes: Ecosystem Benefits, Technology and Resources [use of insects as a resource, or as inspiration], Pests); (iv) ‘Collaboration, Engagement and Training’ (themes: Knowledge Access, Training and Collaboration, Societal Engagement). Priority challenges encompass research questions, funding objectives, new technologies, and priorities for outreach and engagement. Examples include training taxonomists, establishing a global network of insect monitoring sites, understanding the extent of insect declines, exploring roles of cultivated insects in food supply chains, and connecting professional with amateur entomologists. Responses to different challenges could be led by amateur and professional entomologists, at all career stages. Overall, the challenges provide a diverse array of options to inspire and initiate entomological activities and reveal the potential of entomology to contribute to addressing global challenges related to human health and well-being, and environmental change
    • 

    corecore