239 research outputs found
Aeromonas spp.-mediated cell-contact cytotoxicity is associated with the presence of type III secretion system
In the study we examined the production of cytotonic and cytotoxic toxins and the presence of a type III secretion system (TTSS) in 64 Aeromonas spp. strains isolated from fecal specimens of patients with gastroenteritis. We observed that contact of the bacteria with host epithelial cells is a prerequisite for their cytotoxicity at 3 h incubation. Cell-contact cytotoxic activity of the strains was strongly associated with the presence of the TTSS. Culture supernatants of the strains induced low cytotoxicity effects at the same time of incubation. Cell-free supernatants of 61 (95%) isolates expressed cytotoxic activity which caused the destruction of HEp-2 cells at 24 h. Moreover, 44% strains were cytotonic towards CHO cells and 46% of strains invaded epithelial cells
Observation of Coherent Elastic Neutrino-Nucleus Scattering
The coherent elastic scattering of neutrinos off nuclei has eluded detection
for four decades, even though its predicted cross-section is the largest by far
of all low-energy neutrino couplings. This mode of interaction provides new
opportunities to study neutrino properties, and leads to a miniaturization of
detector size, with potential technological applications. We observe this
process at a 6.7-sigma confidence level, using a low-background, 14.6-kg
CsI[Na] scintillator exposed to the neutrino emissions from the Spallation
Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic
signatures in energy and time, predicted by the Standard Model for this
process, are observed in high signal-to-background conditions. Improved
constraints on non-standard neutrino interactions with quarks are derived from
this initial dataset
Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants
Sodium selenite is used to prevent selenium deficiency known as nutritional muscular dystrophy or white muscle disease. In ruminants, selenium supplements are transformed partiality in insoluble form by ruminal microorganisms and its process decrease the selenium absorption in digestive gastrointestinal. However, the objective in this research was focused in encapsulated sodium selenite to be release into of a pH less than four, similarity to an intestinal environment. It was encapsulated by nanoprecipitation and emulsion–evaporation methods, within polymeric nanoparticles. The effect of these methods, polymer proportion (Eudragit RL and RS) and solvent (ethanol and acetone) on the physicochemical (drug entrapment, polidispersity index (PDI) and z potential) and morphological characteristics (particle morphology and particle size) were evaluated. Particle size from each nanoparticles, formulation ranged from 36.64 to 213.86 nm. Particle size, z potential and PDI increased (P ≤ 0.01) when nanoprecipitation and ethanol were used. No significant differences (P > 0.05) were observed when different polymeric proportions were used. Selenium entrapment was 26% when emulsion–evaporation method was used and 78% with nanoprecipitation. Nanoparticles produced by nanoprecipitation were spherical and had a great variation in particle size; on the other hand, nanoparticles produced by emulsion–evaporation were spherical as well as amorphous and presented a homogeneous nanopartcicle size distribution. The release of selenium from nanoparticles was higher in acid pH (less than 4), this condition may represent a better availability of the mineral in the small intestine
Preparation of polycaprolactone nanoparticles via supercritical carbon dioxide extraction of emulsions
Polycaprolactone (PCL) nanoparticles were produced via supercritical fluid extraction of emulsions (SFEE) using supercritical carbon dioxide (scCO2). The efficiency of the scCO2 extraction was investigated and compared to that of solvent extraction at atmospheric pressure. The effects of process parameters including polymer concentration (0.6–10% w/w in acetone), surfactant concentration (0.07 and 0.14% w/w) and polymer-to-surfactant weight ratio (1:1–16:1 w/w) on the particle size and surface morphology were also investigated. Spherical PCL nanoparticles with mean particle sizes between 190 and 350 nm were obtained depending on the polymer concentration, which was the most important factor where increase in the particle size was directly related to total polymer content in the formulation. Nanoparticles produced were analysed using dynamic light scattering and scanning electron microscopy. The results indicated that SFEE can be applied for the preparation of PCL nanoparticles without agglomeration and in a comparatively short duration of only 1 h
Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply
Background: Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings: In this study we test whether dispersal and connectivity patterns generated from a biophysical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p,0.05) and strong, ranging from 0.34 to 0.81 at time lags of 26 to+5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p,0.001, and r = 0.79, p,0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance: The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provid
IRAK4 gene polymorphism and odontogenic maxillary sinusitis
Objectives This study aimed to evaluate whether a specific interleukin-1 receptor-associated kinase-4 (IRAK4) gene polymorphism had any influence on the development of changes in maxillary sinus, particularly in the presence of etiological factors of dental origin.Materials and methods The study population included 153 Portuguese Caucasians that were selected from a database of 504 retrospectively analysed computed tomography (CT) scans. A genetic test was performed, and a model was created through logistic analysis and regression coefficients. The statistical methodologies included were the independent Chi test, Fisher's exact test, binary logistic regression and the receiver operating characteristic (ROC) curve.Results The estimated prevalence of IRAK4 gene polymorphism found in a Portuguese Caucasian population was 26.8 % (CI 95 %) [20.1, 34.7 %]. A model to predict the inflammatory response in the maxillary sinus in the presence etiological factors of dental origin was constructed. This model had the following as variables: previously diagnosed sinusitis, sinus pressure symptoms, cortical bone loss observed on CT, positive genetic test result and radiographic examination that revealed the roots of the teeth communication with the maxillary sinus, which are interpreted as risk factors.Conclusions The constructed model should be considered an initial clinical tool. The area under the ROC curve found, AUC=0.91, revealed that the model correctly predicts the outcome in 91.1 % of cases.info:eu-repo/semantics/publishedVersio
Universal Stress Proteins Are Important for Oxidative and Acid Stress Resistance and Growth of Listeria monocytogenes EGD-e In Vitro and In Vivo
Background: Pathogenic bacteria maintain a multifaceted apparatus to resist damage caused by external stimuli. As part of this, the universal stress protein A (UspA) and its homologues, initially discovered in Escherichia coli K-12 were shown to possess an important role in stress resistance and growth in several bacterial species.
Methods and Findings: We conducted a study to assess the role of three homologous proteins containing the UspA domain in the facultative intracellular human pathogen Listeria monocytogenes under different stress conditions. The growth properties of three UspA deletion mutants (deltalmo0515, deltalmo1580 and deltalmo2673) were examined either following challenge with a sublethal concentration of hydrogen peroxide or under acidic conditions. We also examined their ability for intracellular survival within murine macrophages. Virulence and growth of usp mutants were further characterized in invertebrate and vertebrate infection models.
Tolerance to acidic stress was clearly reduced in Δlmo1580 and deltalmo0515, while oxidative stress dramatically diminished growth in all mutants. Survival within macrophages was significantly decreased in deltalmo1580 and deltalmo2673 as compared to the wild-type strain. Viability of infected Galleria mellonella larvae was markedly higher when injected with deltalmo1580 or deltalmo2673 as compared to wild-type strain inoculation, indicating impaired virulence of bacteria lacking these usp genes. Finally, we observed severely restricted growth of all chromosomal deletion mutants in mice livers and spleens as compared to the load of wild-type bacteria following infection.
Conclusion: This work provides distinct evidence that universal stress proteins are strongly involved in listerial stress response and survival under both in vitro and in vivo growth conditions
Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community
Comparing many species' population genetic patterns across the same seascape can identify species with different levels of structure, and suggest hypotheses about the processes that cause such variation for species in the same ecosystem. This comparative approach helps focus on geographic barriers and selective or demographic processes that define genetic connectivity on an ecosystem scale, the understanding of which is particularly important for large-scale management efforts. Moreover, a multispecies dataset has great statistical advantages over single-species studies, lending explanatory power in an effort to uncover the mechanisms driving population structure. Here, we analyze a 50-species dataset of Pacific nearshore invertebrates with the aim of discovering the most influential structuring factors along the Pacific coast of North America. We collected cytochrome c oxidase I (COI) mtDNA data from populations of 34 species of marine invertebrates sampled coarsely at four coastal locations in California, Oregon, and Alaska, and added published data from 16 additional species. All nine species with non-pelagic development have strong genetic structure. For the 41 species with pelagic development, 13 show significant genetic differentiation, nine of which show striking FST levels of 0.1–0.6. Finer scale geographic investigations show unexpected regional patterns of genetic change near Cape Mendocino in northern California for five of the six species tested. The region between Oregon and Alaska is a second focus of intraspecific genetic change, showing differentiation in half the species tested. Across regions, strong genetic subdivision occurs more often than expected in mid-to-high intertidal species, a result that may reflect reduced gene flow due to natural selection along coastal environmental gradients. Finally, the results highlight the importance of making primary research accessible to policymakers, as unexpected barriers to marine dispersal break the coast into separate demographic zones that may require their own management plans
- …