323 research outputs found

    Inhibitory effect of green coffee bean extract on fat accumulation and body weight gain in mice

    Get PDF
    BACKGROUND: An epidemiological study conducted in Italy indicated that coffee has the greatest antioxidant capacity among the commonly consumed beverages. Green coffee bean is rich in chlorogenic acid and its related compounds. The effect of green coffee bean extract (GCBE) on fat accumulation and body weight in mice was assessed with the objective of investigating the effect of GCBE on mild obesity. METHODS: Male ddy mice were fed a standard diet containing GCBE and its principal constituents, namely, caffeine and chlorogenic acid, for 14 days. Further, hepatic triglyceride (TG) level was also investigated after consecutive administration (13 days) of GCBE and its constituents. To examine the effect of GCBE and its constituents on fat absorption, serum TG changes were evaluated in olive oil-loaded mice. In addition, to investigate the effect on hepatic TG metabolism, carnitine palmitoyltransferase (CPT) activity in mice was evaluated after consecutive ingestion (6 days) of GCBE and its constituents (caffeine, chlorogenic acid, neochlorogenic acid and feruloylquinic acid mixture). RESULTS: It was found that 0.5% and 1% GCBE reduced visceral fat content and body weight. Caffeine and chlorogenic acid showed a tendency to reduce visceral fat and body weight. Oral administration of GCBE (100 and 200 mg/kg· day) for 13 days showed a tendency to reduce hepatic TG in mice. In the same model, chlorogenic acid (60 mg/kg· day) reduced hepatic TG level. In mice loaded with olive oil (5 mL/kg), GCBE (200 and 400 mg/kg) and caffeine (20 and 40 mg/kg) reduced serum TG level. GCBE (1%), neochlorogenic acid (0.028% and 0.055%) and feruloylquinic acid mixture (0.081%) significantly enhanced hepatic CPT activity in mice. However, neither caffeine nor chlorogenic acid alone was found to enhance CPT activity. CONCLUSION: These results suggest that GCBE is possibly effective against weight gain and fat accumulation by inhibition of fat absorption and activation of fat metabolism in the liver. Caffeine was found to be a suppressor of fat absorption, while chlorogenic acid was found to be partially involved in the suppressive effect of GCBE that resulted in the reduction of hepatic TG level. Phenolic compounds such as neochlorogenic acid and feruloylquinic acid mixture, except chlorogenic acid, can enhance hepatic CPT activity

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Epidemiology and cost analysis for patients with oral cancer in a university hospital in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although several studies have reported the direct cost of oral cancer (OC), little research has invested the factors that could influence the costs of OC patient. This study analyzes the epidemiological characteristics and the direct cost of OC. More specifically, the study examines the relationship between patients' medical costs and influencing factors of epidemiology.</p> <p>Methods</p> <p>All patients encountered from January 2007 to December 2007 at the School of Stomatology of the Fourth Military Medical University (FMMU) in China with diagnosis of oral cancer have been selected. Medical hospitalization days (MHD) and cost per patient (CPP) of the samples have been calculated for different patient groups, and the results have been compared using statistical methods.</p> <p>Results</p> <p>A total of 456 oral cancer patients have been selected in this study. The epidemical characteristics are as follows: female/male 176/280; squamous cell carcinoma (SCC)/adenocarcinoma/sarcoma/lymphoma/other types 246/127/40/27/16; stage I/II/III/IV 90/148/103/115; smoker/non-smoker 136/320; rural/urban patients 82/374. Of all the patients, 82.24% were over 40 years of age. Rural patients were significantly younger than urban patients. SCC was the majority histology in older patients, while sarcoma was more common in younger patients. 372 of the patients received treatment and 84 gave up any treatment after diagnosis. Treatment cost accounted for majority of the payment. The CPP and MHD of patients in late clinical stage were higher than that of patient in early stage.</p> <p>Conclusion</p> <p>Gender, smoking habit and age older than 40 years are the epidemiological risk factors for oral cancer. Lack of medicare, smoking habit, late clinical stage and SCC are the high economic factors for patient medical cost.</p

    Protective effects of a compound herbal extract (Tong Xin Luo) on free fatty acid induced endothelial injury: Implications of antioxidant system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tong-Xin-Luo (TXL) – a mixture of herbal extracts, has been used in Chinese medicine with established therapeutic efficacy in patients with coronary artery disease.</p> <p>Methods</p> <p>We investigated the protective role of TXL extracts on endothelial cells injured by a known risk factor – palmitic acid (PA), which is elevated in metabolic syndrome and associated with cardiovascular complications. Human aortic endothelial cells (HAECs) were preconditioned with TXL extracts before exposed to PA for 24 hours.</p> <p>Results</p> <p>We found that PA (0.5 mM) exposure induced 73% apoptosis in endothelial cells. However, when HAECs were preconditioned with ethanol extracted TXL (100 μg/ml), PA induced only 7% of the endothelial cells into apoptosis. Using antibody-based protein microarray, we found that TXL attenuated PA-induced activation of p38-MAPK stress pathway. To investigate the mechanisms involved in TXL's protective effects, we found that TXL reduced PA-induced intracellular oxidative stress. Through AMPK pathway, TXL restored the intracellular antioxidant system, which was depressed by the PA treatment, with an increased expression of thioredoxin and a decreased expression of the thioredoxin interacting protein.</p> <p>Conclusion</p> <p>In summary, our study demonstrates that TXL protects endothelial cells from PA-induced injury. This protection is likely mediated by boosting intracellular antioxidant capacity through AMPK pathway, which may account for the therapeutic efficacy in TXL-mediated cardiovascular protection.</p

    15-Deoxy-Δ12,14 Prostaglandin J2 Reduces the Formation of Atherosclerotic Lesions in Apolipoprotein E Knockout Mice

    Get PDF
    AIM: 15-deoxy-Δ¹²,¹⁴ prostaglandin J₂ (15d-PGJ₂) is a ligand of peroxisome proliferator-activated receptor γ (PPARγ) having diverse effects such as the differentiation of adipocytes and atherosclerotic lesion formation. 15d-PGJ₂ can also regulate the expression of inflammatory mediators on immune cells independent of PPARγ. We investigated the antiatherogenic effect of 15d-PGJ₂. METHODS: We fed apolipoprotein (apo) E-deficient female mice a Western-type diet from 8 to 16 wk of age and administered 1 mg/kg/day 15d-PGJ₂ intraperitoneally. We measured atherosclerotic lesions at the aortic root, and examined the expression of macrophage and inflammatory atherosclerotic molecules by immunohistochemical and real-time PCR in the lesion. RESULTS: Atherosclerotic lesion formation was reduced in apo E-null mice treated with 15d-PGJ₂, as compared to in the controls. Immunohistochemical and real-time PCR analyses showed that the expression of MCP-1, TNF-α, and MMP-9 in atherosclerotic lesions was significantly decreased in 15d-PGJ₂ treated mice. The 15d-PGJ₂ also reduced the expression of macrophages and RelA mRNA in atherosclerotic lesions. CONCLUSION: This is the first report 15d-PGJ₂, a natural PPARγ agonist, can improve atherosclerotic lesions in vivo. 15d-PGJ₂ may be a beneficial therapeutic agent for atherosclerosis

    The role of the EP receptors for prostaglandin E2 in skin and skin cancer

    Get PDF
    One of the most common features of exposure of skin to ultraviolet (UV) light is the induction of inflammation, a contributor to tumorigenesis, which is characterized by the synthesis of cytokines, growth factors and arachidonic acid metabolites, including the prostaglandins (PGs). Studies on the role of the PGs in non-melanoma skin cancer (NMSC) have shown that the cyclooxygenase-2 (COX-2) isoform of the cyclooxygenases is responsible for the majority of the pathological effects of PGE2. In mouse skin models, COX-2 deficiency significantly protects against chemical carcinogen- or UV-induced NMSC while overexpression confers endogenous tumor promoting activity. Current studies are focused on identifying which of the G protein-coupled EP receptors mediate the tumor promotion/progression activities of PGE2 and the signaling pathways involved. As reviewed here, the EP1, EP2, and EP4 receptors, but not the EP3 receptor, contribute to NMSC development, albeit through different signaling pathways and with somewhat different outcomes. The signaling pathways activated by the specific EP receptors are context specific and likely depend on the level of PGE2 synthesis, the differential levels of expression of the different EP receptors, as well as the levels of expression of other interacting receptors. Understanding the role and mechanisms of action of the EP receptors potentially offers new targets for the prevention or therapy of NMSCs

    Behavioural and neuroanatomical correlates of auditory speech analysis in primary progressive aphasias

    Get PDF
    Background Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. Methods We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters—temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)—in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients’ brain magnetic resonance images. Results Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Conclusions Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development

    Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Get PDF
    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes

    Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors

    Get PDF
    Patellofemoral Pain Syndrome (PFPS), a common cause of anterior knee pain, is successfully treated in over 2/3 of patients through rehabilitation protocols designed to reduce pain and return function to the individual. Applying preventive medicine strategies, the majority of cases of PFPS may be avoided if a pre-diagnosis can be made by clinician or certified athletic trainer testing the current researched potential risk factors during a Preparticipation Screening Evaluation (PPSE). We provide a detailed and comprehensive review of the soft tissue, arterial system, and innervation to the patellofemoral joint in order to supply the clinician with the knowledge required to assess the anatomy and make recommendations to patients identified as potentially at risk. The purpose of this article is to review knee anatomy and the literature regarding potential risk factors associated with patellofemoral pain syndrome and prehabilitation strategies. A comprehensive review of knee anatomy will present the relationships of arterial collateralization, innervations, and soft tissue alignment to the possible multifactoral mechanism involved in PFPS, while attempting to advocate future use of different treatments aimed at non-soft tissue causes of PFPS
    corecore