124 research outputs found

    Cartan-Weyl 3-algebras and the BLG Theory I: Classification of Cartan-Weyl 3-algebras

    Full text link
    As Lie algebras of compact connected Lie groups, semisimple Lie algebras have wide applications in the description of continuous symmetries of physical systems. Mathematically, semisimple Lie algebra admits a Cartan-Weyl basis of generators which consists of a Cartan subalgebra of mutually commuting generators H_I and a number of step generators E^\alpha that are characterized by a root space of non-degenerate one-forms \alpha. This simple decomposition in terms of the root space allows for a complete classification of semisimple Lie algebras. In this paper, we introduce the analogous concept of a Cartan-Weyl Lie 3-algebra. We analyze their structure and obtain a complete classification of them. Many known examples of metric Lie 3-algebras (e.g. the Lorentzian 3-algebras) are special cases of the Cartan-Weyl 3-algebras. Due to their elegant and simple structure, we speculate that Cartan-Weyl 3-algebras may be useful for describing some kinds of generalized symmetries. As an application, we consider their use in the Bagger-Lambert-Gustavsson (BLG) theory.Comment: LaTeX. 34 pages.v2. deleted some distracting paragraphs in the introduction to bring more out the main results of the paper. typos corrected and references adde

    Nonequilibrium Dynamics in Noncommutative Spacetime

    Get PDF
    We study the effects of spacetime noncommutativity on the nonequilibrium dynamics of particles in a thermal bath. We show that the noncommutative thermal bath does not suffer from any further IR/UV mixing problem in the sense that all the finite-temperature non-planar quantities are free from infrared singularities. We also point out that the combined effect of finite temperature and noncommutative geometry has a distinct effect on the nonequilibrium dynamics of particles propagating in a thermal bath: depending on the momentum of the mode of concern, noncommutative geometry may switch on or switch off their decay and thermalization. This momentum dependent alternation of the decay and thermalization rates could have significant impacts on the nonequilibrium phenomena in the early universe at which spacetime noncommutativity may be present. Our results suggest a re-examination of some of the important processes in the early universe such as reheating after inflation, baryogenesis and the freeze-out of superheavy dark matter candidates.Comment: 24 pages, 2 figure

    Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering

    Get PDF
    Synthetic magnetism has been used to control charge neutral excitations for applications ranging from classical beam steering to quantum simulation. In optomechanics, radiation-pressure-induced parametric coupling between optical (photon) and mechanical (phonon) excitations may be used to break time-reversal symmetry, providing the prerequisite for synthetic magnetism. Here we design and fabricate a silicon optomechanical circuit with both optical and mechanical connectivity between two optomechanical cavities. Driving the two cavities with phase-correlated laser light results in a synthetic magnetic flux, which in combination with dissipative coupling to the mechanical bath, leads to nonreciprocal transport of photons with 35dB of isolation. Additionally, optical pumping with blue-detuned light manifests as a particle non-conserving interaction between photons and phonons, resulting in directional optical amplification of 12dB in the isolator through direction. These results indicate the feasibility of utilizing optomechanical circuits to create a more general class of nonreciprocal optical devices, and further, to enable novel topological phases for both light and sound on a microchip.Comment: 18 pages, 8 figures, 4 appendice

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0≀n+nˉ≀D0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D−1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte

    Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function

    Get PDF
    We evaluate the one loop determinant of matter multiplet fields of N=4 supergravity in the near horizon geometry of quarter BPS black holes, and use it to calculate logarithmic corrections to the entropy of these black holes using the quantum entropy function formalism. We show that even though individual fields give non-vanishing logarithmic contribution to the entropy, the net contribution from all the fields in the matter multiplet vanishes. Thus logarithmic corrections to the entropy of quarter BPS black holes, if present, must be independent of the number of matter multiplet fields in the theory. This is consistent with the microscopic results. During our analysis we also determine the complete spectrum of small fluctuations of matter multiplet fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde

    Neutrino-electron scattering in noncommutative space

    Full text link
    Neutral particles can couple with the U(1)U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to 1T\frac 1 T, where TT is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.Comment: 12 pages, 2 figure

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Spin-2 spectrum of defect theories

    Get PDF
    We study spin-2 excitations in the background of the recently-discovered type-IIB solutions of D'Hoker et al. These are holographically-dual to defect conformal field theories, and they are also of interest in the context of the Karch-Randall proposal for a string-theory embedding of localized gravity. We first generalize an argument by Csaki et al to show that for any solution with four-dimensional anti-de Sitter, Poincare or de Sitter invariance the spin-2 excitations obey the massless scalar wave equation in ten dimensions. For the interface solutions at hand this reduces to a Laplace-Beltrami equation on a Riemann surface with disk topology, and in the simplest case of the supersymmetric Janus solution it further reduces to an ordinary differential equation known as Heun's equation. We solve this equation numerically, and exhibit the spectrum as a function of the dilaton-jump parameter Δϕ\Delta\phi. In the limit of large Δϕ\Delta\phi a nearly-flat linear-dilaton dimension grows large, and the Janus geometry becomes effectively five-dimensional. We also discuss the difficulties of localizing four-dimensional gravity in the more general backgrounds with NS5-brane or D5-brane charge, which will be analyzed in detail in a companion paper.Comment: 41 pages, 6 figure
    • 

    corecore