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1 Introduction

On the noncommutative (NC) spacetime, the spacetime coordinates do not commute with

each other anymore but obey the commutation relation:

[xµ, xν ] = iθµν (1.1)

where θµν is a constant antisymmetric matrix [1]. Noncommutative quantum field theory

(NCQFT) can then be derived from its commutative counterpart with the usual product

of fields replaced by the Moyal star product:

(φ ⋆ χ)(x) ≡ e
i
2

θµν∂x
µ∂y

ν φ(x)χ(y)|y=x. (1.2)

As NCQFT arises naturally from string theory [2–5], it has received lots of attentions and

has been an active research topic during the last decade. NCQFT has many unique proper-

ties such as Lorentz violation [6], nonlocality and modified causality [7, 8]. Another intrigu-

ing phenomenon associated with NCQFT is the existence of the infrared (IR)/ultraviolet

(UV) singularities [9–11]. This is a phenomenon which gives rise to various pathologies in

the field theory. Despite the loss of Lorentz invariance and locality, it has been argued that

both CPT and spin-statistics theorems still hold [12–14]. However, it has been pointed out

that the space-time noncommutative theory (i.e. θ0i 6= 0 for i = 1, 2, 3) may violate unitar-

ity [15] if the theory also suffers from IR/UV mixing [16, 17]. Therefore, to avoid getting

into trouble with unitarity, we will confine ourselves to the case with θ0i = 0 in our study.

On the other hand, nonequilibrium phenomena play a crucial role in many important

processes in the early universe. These include reheating after inflation, baryogenesis, freeze-

out of dark matter candidates, electroweak and QCD phase transitions [18–20]. A common

– 1 –



J
H
E
P
0
2
(
2
0
1
0
)
0
9
8

treatment of nonequilibrium evolution is to implement the closed-time-path (CTP) formal-

ism [21–24] which is a path-integral approach to a time evolved density matrix. The thermal

bath degrees of freedom are integrated out to obtain the nonequilibrium effective action

which forms the generating functional for all the correlation functions. This approach also

leads to quantum Boltzmann equations which can be solved to give the time evolution of

the distribution functions. The accomplishment of thermal equilibrium is determined by

the asymptotic time behaviour of the equal-time two-point correlation function and the

distribution function.

A natural question to be asked would be: what if we consider finite temperature and

spacetime noncommutativity at the same time? Since noncommutative geometry naturally

introduces a new energy scale ENC ∼ θ−1/2 in addition to the temperature scale T , non-

commutativity could have an interesting impact on the time evolution of a nonequilibrium

system. In particular, if spacetime noncommutativity is really present in the early uni-

verse, it would be important to understand how does it affect the relevant physics. Some

behaviours of NCQFT at finite temperature have been investigated in [25–32]. However,

none of these works have considered the decay and thermalization of particles propagat-

ing in a noncommutative thermal bath. In order to fill the gap, in this paper we raise

and investigate the following question: how does spacetime noncommutativity affect the

nonequilibrium dynamics?

In order to address this question, we consider a simple model with scalar Φ particles

propagating in a thermal bath constituted by two other different scalars χ1 and χ2. The

question of how do the Φ particles come from at the first place is irrelevant to our discussion.

Immediately after the Φ particles are created, they are not in equilibrium with the thermal

bath. They can either decay into χ1 + χ2 or thermalize with them, or both, depending on

their kinematical properties. A complete understanding of the nonequilibrium dynamics

of Φ would be to study the time evolution of their correlation and distribution functions.

However, as a first step, we will only confine ourselves to their decay and thermalization

processes in this study. The decay rate ΓD and thermalization rate ΓT of the Φ particles

are characterized by the imaginary part of their self-energy as well as their in-medium

dispersion relation [33]. Notice that in the expanding early universe, even if ΓT 6= 0 and

thereby a thermalization process is kinematically favored, it still does not guarantee an

actual thermalization. To maintain thermal equilibrium with the thermal bath in the

early universe, we require ΓT > H where H is the Hubble expansion rate. If ΓT = 0 or

ΓT < H, then the Φ particles will continue to be nonequilibrium; and whether they can

have out-of-equilibrium decays depends on ΓD 6= 0 or ΓD = 0.

This article is organized as follows. In section 2, we will outline our model and sketch

how to compute the different contributions to the imaginary part of the self-energy, which

will be analyzed to reveal its properties. We will also compute the real part of the self-

energy and hence obtain the noncommutative in-medium dispersion relation. The IR/UV

mixing issue in our model will be analyzed as well. In section 3, we will study the im-

pacts of spacetime noncommutativity on the decay and thermalization processes of the Φ

particles propagating in the thermal bath. We will find that as a combined result of finite

temperature and noncommutative geometry, the stability and thermalizability properties
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of the Φ particles propagating in the thermal bath are altered in a momentum dependent

manner. Finally, in section 4, we will give some preliminary discussions on the possible

applications of our results to the early universe.

2 The model

We consider a theory of three interacting real scalar fields in noncommutative spacetime

with the following Lagrangian density

L=
1

2
∂µΦ∂µΦ− 1

2
M2

BΦ2+

2
∑

i=1

[

1

2
∂µχi∂

µχi−
1

2
M2

i χ2
i

]

− g

2
χ1 ⋆ Φ ⋆ χ2 −

g

2
χ2 ⋆ Φ ⋆ χ1 , (2.1)

where MB is the bare mass of Φ. We will assume that the mutual interaction between

the fields χ1 , χ2 ensures them to be in thermal equilibrium at a temperature T = 1/β.

The commutative counterpart of this model has been previously studied in [33, 34] with an

analysis of the different processes in the thermal medium. Here we will follow the similar

treatment and conventions as [33].

The relevant quantity is the self-energy of the field Φ which we will obtain to one loop

order O(g2) in the Matsubara representation. The one-loop self-energy is given by

Σ(νn, ~k) = −g2

∫

d3~p

(2π)3
1

β

∑

ωm

Gχ1
(ωm, ~p)Gχ2

(

ωm + νn, ~p + ~k
)

(

1

2
+

1

2
eip×k

)

, (2.2)

where ωm = 2πm/β, νn = 2πn/β are the bosonic Matsubara frequencies and p × k ≡
pi θij kj . The factors 1

2 and 1
2 eip×k represent the planar and non-planar contributions

respectively. Obviously the noncommutative phase factor is nontrivial only if ki is nonva-

nishing in the direction where θij is non-zero . The Matsubara propagators Gχ1
and Gχ2

are written in the following dispersive form

Gχ1
(ωm, ~p) =

∫

dp0
ρ1(p0, ~p)

p0 − iωm
, (2.3)

Gχ2
(ωm + νn, ~p + ~k) =

∫

dq0
ρ2(q0, ~p + ~k)

q0 − iωm − iνn
, (2.4)

where the spectral densities for χ1 and χ2 are

ρ1(p0, ~p) =
1

2ω1
[δ(p0 − ω1) − δ(p0 + ω1)] , ω1 =

√

~p2 + M2
1 , (2.5)

ρ2(q0, ~p + ~k) =
1

2ω2
[δ(q0 − ω2) − δ(q0 + ω2)] , ω2 =

√

(~p + ~k)2 + M2
2 . (2.6)

This representation allows us to carry out the sum over Matsubara frequencies ωm in a

rather straightforward manner [35, 36]. The resulting self-energy can be further written in

the dispersive form

Σ(νn, ~k) = − 1

π

∫

∞

−∞

dω
ImΣR(ω, k)

ω − iνn
, (2.7)

where ImΣR(ω, k) is the imaginary part of the retarded self-energy which is defined by the

analytic continuation

ΣR(k0, k) = Σ(νn = −ik0 − ǫ, k). (2.8)
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χ1, ~p

χ1, ~p

χ2, ~p + ~k
χ2, ~p + ~k

Φ, ~k, ω

Φ, ~k, ω

Figure 1. One-loop processes contributing to σP,NP
0 (ω, k), σP,NP

a
(ω, k, T ) and σP, NP

b
(ω, k, T ). The

inverse processes are not shown.

2.1 Imaginary part of the self-energy

The retarded self-energy ΣR(ω) has cuts along the real axis. The discontinuity across these

cuts (defined by ΣR(ω + iǫ) − ΣR(ω − iǫ)) gives the imaginary part of ΣR(ω):

Disc ΣR(ω) = −2i ImΣR(ω). (2.9)

It is then easy to obtain

ImΣR(ω,~k) = g2
∫ d3~p

(2π)3
2π

2ω1 2ω2























[

δ(ω − ω1 − ω2) − δ(ω + ω1 + ω2)
]

· (1 + n1 + n2)

+ δ(ω + ω1 − ω2)(n1 − n2)

+ δ(ω + ω2 − ω1)(n2 − n1)























(

1
2 + 1

2eip×k
)

,

where

ni = n(ωi) , n(ω) =
1

eω/T − 1
. (2.10)

Here the factor 1
2 gives the planar contribution ImΣP

R, while the factor 1
2ep×k gives the

nonplanar contribution ImΣNP
R . We will use the superscripts “P” and “NP” denote the

planar and non-planar contributions respectively.

It is convenient to write ImΣP,NP
R as a sum of several contributions of different physical

origin, namely

ImΣP
R(ω, k, T ) = σP

0 (ω, k) + σP
a (ω, k, T ) + σP

b (ω, k, T ) , (2.11)

ImΣNP
R (ω, k, T ) = σNP

0 (ω, k) + σNP
a (ω, k, T ) + σNP

b (ω, k, T ) . (2.12)

Here the quantities σP, NP
0 (ω, k) are the zero-temperature contributions, while

σP, NP
a (ω, k, T ), σP, NP

b (ω, k, T ) are the finite-temperature contributions. At one-loop, the

processes that contribute to σP, NP
0 (ω, k), σP, NP

a (ω, k, T ) are Φ ↔ χ1 + χ2, while the pro-

cesses that contribute to σP,NP
b (ω, k, T ) are χ1,2 ↔ Φ + χ2,1. See figure 1.

In [33], the commutative version of our current model has been studied and the cor-

responding contributions to the imaginary part of the self-energy are computed as σ0, σa
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and σb respectively. In fact, ImΣP
R is precisely 1

2 times the corresponding results in [33],

which implies that σP
0 (ω, k) = 1

2 σ0, σP
a (ω, k, T ) = 1

2 σa, σP
b (ω, k, T ) = 1

2 σb. We have:

σP
0 (ω, k) =

g2

32πk
sign(ω)Θ[Q2 − (M1 + M2)

2 ] (B − A ) , (2.13)

σP
a (ω, k, T ) =

g2

32πβk
sign(ω)Θ[Q2−(M1+M2)

2]

[

ln

(

1 − e−βB

1 − e−βA

)

+(M1↔M2)

]

, (2.14)

σP
b (ω, k, T ) =

g2

32πβk
sign(ω)Θ[(M1−M2)

2−Q2]

[

ln

(

1 − e−βA

1 − e−βB

)

+(M1↔M2)

]

, (2.15)

where A = |ω−
p | , B = |ω+

p |,

Q2 = ω2 − k2 (2.16)

and

ω±

p =
|ω| [Q2 + (M2

1 − M2
2 ) ] ± k

√

[Q2 + (M2
1 − M2

2 ) ]2 − 4Q2 M2
1

2Q2
. (2.17)

In σP
a and σP

b , βk ≪ 1 corresponds to the high temperature limit while βk ≫ 1 corresponds

to the low temperature limit. Both σP
a and σP

b increases with decreasing βk. For instance,

σP
a,b → 0 when βk → ∞. On the other hand, both σP

a and σP
b approach to a finite value

when βk → 0.

As for the non-planar parts, we have to include the factor eip×k in the integral. To

evaluate the integral, we note that since the vector θijkj is perpendicular to ki, it is

convenient to adopt a spherical coordinate system with the polar axis pointing in the ki

direction and the azimuthal angle φ measured from an axis defined by θijkj. Denoting the

polar angle by ϑ, we obtain

p × k = p θ k sin ϑ cos φ, (2.18)

where θ is the magnitude of the vector θijk̂j and k̂i is the unit vector of ki. For example,

if ki = (0, 0, k), then θ ≡
√

(θ31)2 + (θ32)2. The calculations then proceed in a similar

fashion as has been performed in the appendix of [33]. After lengthy but straightforward
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calculations, we obtain the non-planar contributions to the imaginary part of the self-energy

σNP
0 =

g2

16π
sign(ω)Θ

[

Q2 − (M1 + M2)
2
] 1

kQθ
sin (Ω kQθ) , (2.19)

σNP
a =

g2

16π
sign(ω)Θ

[

Q2−(M1 + M2)
2
]

∞
∑

n=1

e−
B+A
2k

βk n

βk

√

(

Q θ
β

)2
− n2

sin



Ωβk

√

(

Qθ

β

)2

− n2





+ (M1 ↔ M2 ) , (2.20)

σNP
b =− g2

16π
sign(ω)











Θ(−Q2)

∞
∑

n=1

e
−

B+A
2k

βk

s

(

Q θ
β

)2

+n2

βk

√

(

Q θ
β

)2
+ n2

sinh (Ω βk n)

+ Θ(Q2)Θ[ (M1−M2)
2−Q2 ]

∞
∑

n=1

e−
B+A
2k

βk n

βk

√

(

Q θ
β

)2
− n2

sin



Ω βk

√

(

Qθ

β

)2

− n2













+ (M1 ↔ M2 ) , (2.21)

where Ω = (B−A)/(2k) in the above expressions.1 We note that |σNP
r | ≤ |σP

r | for r = 0, a, b.

From the above expressions, it is obvious that σNP
0 → σP

0 when kQθ ≪ 1. In fact, to

the leading order, Q ∼ M0 where M0 is the renormalized mass of Φ (to be determined in

the next subsection). Thus, kQθ ≪ 1 corresponds to the case where θ ≪ (1/M0) (1/k).

Notice that
√

θ ≡ λNC represents the characteristic length scale smaller than which the

effect of noncommutative geometry becomes significant. Moreover, the Compton and de-

Broglie wavelengths associated with Φ can be identified as λC ∼ 1/M0 and λdB ∼ 1/k

respectively. As a result, we conclude that σNP
0 → σP

0 when λNC ≪
√

λC λdB. This is

always true when λNC is much smaller than the smaller of λC and λdB. In the relativistic

case, λdB ≪ λC; while in the non-relativistic case, λC ≪ λdB. In any case, if λNC is really

much smaller than the smaller of λC and λdB, then the resolution due to either λC or λdB

is not high enough to see the effect of noncommutativity. The system behaves as if it were

commutative, and hence σNP
0 → σP

0 . On the other hand, σNP
0 → 0 when kQθ ≫ 1, which

corresponds to the case λNC ≫
√

λC λdB. This is always true when λNC is larger than the

larger of λC and λdB. In this case, the system is completely noncommutative.

For σNP
a and σNP

b , the significance of noncommutativite effect depends on the ratio

Qθ/β ∼ M0T θ. When Qθ/β ≪ 1, noncommutativity is negligible. This corresponds to

the case when λNC ≪ λT where λT ∼ 1/
√

M0T can be identified as the thermal de-Broglie

wavelength associated with Φ when it is propagating in the thermal bath with temperature

T . In the thermal medium, it is the thermal de-Broglie wavelength that plays the role of the

characteristic resolution acquired by Φ. When λNC ≪ λT, the system behaves as if it were

commutative, and hence σNP
a,b → σP

a,b. On the other hand, the effect of noncommutative

1Notice that if (Qθ/β)2 − n2 < 0, we replace sin(. . .) by sinh(. . .) and
p

(Qθ/β)2 − n2 by
p

n2
− (Qθ/β)2.
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geometry is significant when Qθ/β ≫ 1, which corresponds to λNC ≫ λT. In this case,

both σNP
a and σNP

b are suppressed.

In general, as θ increases, both σNP
a and σNP

b decrease. This can be attributed to

the reduction of degrees of freedom due to spacetime noncommutativity. In particular,

as θ → ∞, σNP
a,b → 0. In this case, the reduction of degrees of freedom due to spacetime

noncommutativity is maximal. This can also be understood from the extremely rapid

oscillations of the phase factor in the integrands of σNP
a and σNP

b .

Furthermore, similar to the commutative case, βk ≪ 1 corresponds to the high temper-

ature limit while βk ≫ 1 corresponds to the low temperature limit. This is true regardless

of the relative significance of the noncommutative geometry. Both σNP
a and σNP

b increase

with decreasing βk. For instance, σNP
a,b → 0 when βk → ∞. On the other hand, both σNP

a

and σNP
b approach to a finite value when βk → 0.

2.2 Dispersion relation

The real part of the self-energy is given by

ReΣR(νn, ~k)=−g2

∫

d3~p

(2π)3
1

β

∑

ωm

1

~p2+M2
1 +ω2

m

1

(~p+~k)2+M2
2 +(ωm+νn)2

(

1

2
+

1

2
eip×k

)

.

Again, the factors 1
2 and 1

2 eip×k represent the planar and non-planar contributions respec-

tively. To facilitate the calculation, we introduce the Schwinger parameters

1

~p2 + M2
1 + ω2

m

=

∫

∞

0
dα1 e−α1 ( ~p2+M2

1
+ω2

m ) , (2.22)

1

(~p + ~k)2 + M2
2 + (ωm + νn )2

=

∫

∞

0
dα2 e−α2 [ (~p+~k)2+M2

2
+( ωm+νn )2 ] . (2.23)

By completing squares, the p integrals now becomes Gaussian and can be readily

evaluated to give

ReΣP, NP
R (νn, ~k) = − g2

64π2

∫

∞

0

dα

α
e−α

[

1

4
k2

E+ 1

2
( M2

1
+M2

2
)
]

−
L2

α

·
∫ 1

−1
dx e−

1

4
α k2

E x2−
1

2
α ( M2

1
−M2

2
)x ϑ

(

n

2
(1 − x),

i β

4πα

)

, (2.24)

where α = α1 + α2, x = (α1 − α2)/α, k2
E = k2 + ν2

n, and

ϑ(z, τ) =

∞
∑

m=−∞

e2πimz+iπm2τ (2.25)

is the Jacobi theta function [37]. Similar to [9], we have multiplied the above integrands

by exp (−1/α Λ2) in order to regulate the small α divergence such that

L2 =











1

Λ2
, for ReΣP

R;

1

Λ2
+

k̃2

4
, for ReΣNP

R

, (2.26)

where k̃ = k θ.
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The leading contribution of the integral (2.24) comes from the region α ∼ 0. After

performing the above integrations and upon the analytic continuation νn → −iω − ǫ, we

obtain the retarded self-energy Re ΣR(ω, k) ≡ IP
0 + INP

0 + IP + I NP with

IP,NP
0 = − g2

32π2
2K0

(

2 c2 L2
)

(2.27)

≈ g2

8π2
ln ( cL ) , for cL ≪ 1, (2.28)

IP,NP = − g2 Q2

8π2(β ω)2

∞
∑

m=1

1

m2

[(

1 +
M2

1 − M2
2

Q2

)

L′

M1
K1

(

2M1 L′
)

+

(

1 − M2
1 − M2

2

Q2

)

L′

M2
K1

(

2M2 L′
)

]

, (2.29)

where Q2 = ω2 − k2 = −k2
E . K0 and K1 are the modified Bessel functions of the second

kind. Here

c2 =

(

Q2 − (M1 − M2)
2
)(

(M1 + M2)
2 − Q2

)

4Q2
(2.30)

and

L′2 = L2 +
m2β2

4
. (2.31)

In fact, IP,NP
0 and IP, NP arise from the m = 0 and m 6= 0 terms in the Jacobi theta

function respectively. In the zero temperature limit T → 0, the only non-vanishing term in

the Jacobi theta function comes from m = 0 in which case ϑ(z, τ) → 1. Notice that c is al-

ways positive-define if (M1−M2)
2 < Q2 < (M1+M2)

2. For Q2 > (M1+M2)
2, the Φ particle

can decay into χ1 and χ2. For Q2 < (M1−M2)
2, χ1 (or χ2) can decay into Φ and χ2 (or χ1).

In both cases, c becomes imaginary and a non-zero imaginary part will appear in IP,NP
0 .

The bare mass MB of Φ receives renormalization from both of IP
0 and INP

0 , and so the

(zero-temperature) renormalized mass for Φ is defined as

M2
0 = M2

B + IP
0 |Q2=M2

0
+ INP

0 |Q2=M2
0
. (2.32)

To the order O(g2), the dispersion relation is then given by

ω2 = k2 + M2
0 + IP + INP, (2.33)

where

IP = IP|Q2=M2
0

and INP = INP|Q2=M2
0

(2.34)

represent the finite-temperature corrections to the dispersion relation.

It is instructive to examine the behaviour of the finite temperature quantities IP, NP

in various limits. In the low temperature limit with T ≪ M1, M2, we have M1,2L
′ ≫ 1.

Using K1(x) →
√

π
2x e−x for x ≫ 1, it is obvious that IP, NP are exponentially suppressed

as long as T ≪ M1, M2, regardless of the significance of the noncommutativity. This is

consistent with the fact that IP, NP arise from the m 6= 0 terms in the Jacobi theta function

and can survive only at finite temperature. Similarly, INP is exponentially suppressed in
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the large θ limit with 1/kθ ≪ M1, M2, regardless of the magnitude of the temperature

T . On the other hand, in the high temperature limit with M1, M2 ≪ T, 1/kθ, we have

M1,2L
′ ≪ 1. Using K1(x) → 1

x for x ≪ 1, we obtain

IP,NP ≈ − g2 Q2

96 (βω)2

[(

1 +
M2

1 − M2
2

Q2

)

1

M2
1

+

(

1 − M2
1 − M2

2

Q2

)

1

M2
2

]

. (2.35)

It is remarkable to notice that the above expression for IP, NP are independent of m and the

ultraviolet cut-off Λ. Also, it is valid irrespective to the relative magnitude between T and

1/kθ. Most interestingly, the non-planar contribution INP is completely independent of θ.

This means that in the limit M1, M2 ≪ T, 1/kθ, the dispersion relation receives vanishing

finite-temperature corrections from the spacetime noncommutativity.

Finally, let us comment on the IR/UV mixing effect of the noncommutative field theory

at finite temperature. Needless to say, since INP
0 is a zero-temperature non-planar quantity,

it does suffer from the usual IR/UV mixing. Since the IR singularities are a reflection of

the fact that the field theory is UV divergent, the key to resolve the IR singularities lies at

a proper UV finite completion of the noncommutative field theory [38]. With a choice of

UV completion, the IR singularities will get smoothen out. For example, a natural choice

is to embed the noncommutative field theory as a low energy field theory of open string

theory in background B-fields. It was shown explicitly in [38] that in doing so, the IR

pathologies of noncommutative field theory are resolved. In particular, in the deep IR,

the theory flows continuously to the commutative field theory and the normal Wilsonian

behaviour is restored. Therefore, with this understanding, the zero-temperature IR/UV

singularities are harmless.

It is clear that our noncommutative thermal bath does not suffer from any further

IR/UV mixing problem, in the sense that all the finite-temperature non-planar quantities

are healthy and are absent from any infrared singularities if we take the limit k → 0 after

taking the limit Λ → ∞. For instance, let us look at the quantity L′ in INP (which is of

purely finite-temperature nature) as displayed in (2.29). It is obvious that L′2 → m2β2/4

when Λ → ∞ and k → 0. Unless T → ∞, INP is manifestly finite. Physically, it is the

finite temperature T acquired by the thermal bath that rescues the system from any further

IR/UV mixing problem: the finite temperature T acts as an effective ultraviolet cut-off for

the system once we have taken the limit Λ → ∞.

3 Effects of noncommutativity on nonequilibrium dynamics

In previous section, we have computed the imaginary part of the self-energy as well as

the dispersion relation associated with the Φ particles. Now, we can proceed to study the

nonequilibrium dynamics of Φ when it propagates in the noncommutative spacetime. In

particular, we will focus on how does spacetime noncommutativity affect the possible decay

and thermalization processes of Φ in the thermal bath. Without loss of generality, we will

assume that M1 ≥ M2.
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3.1 Decay and thermalization rates

Let us write the imaginary part of the self-energy as ImΣR = σD + σT where σD =

σP
0 + σP

a + σNP
0 + σNP

a and σT = σP
b + σNP

b . These quantities are regulated by kinematical

constraints and take the forms:

σD = Θ[Q2 − (M1 + M2)
2 ] ΛD(Q2, k2), (3.1)

σT = Θ[ (M1 − M2)
2 − Q2 ] ΛT(Q2, k2) + Θ(−Q2 ) Λ′

T(Q2, k2), (3.2)

where ΛD(Q2, k2) can be read off from (2.13), (2.14), (2.19), (2.20), while ΛT(Q2, k2) and

Λ′

T(Q2, k2) can be read off from (2.15), (2.21) respectively. To compute the decay and

thermalization rates [33, 36], we need to put the Φ field on-shell, i.e. setting

Q2 = M2
0 + IP + INP. (3.3)

Then, to the order O(g2), we obtain

ΓD =
ΛD(M2

0 , k2)

2ω0
Θ[Q2 − (M1 + M2)

2 ] (3.4)

and

ΓT =
ΛT(M2

0 , k2)

2ω0
Θ[ (M1 − M2)

2 − Q2 ], (3.5)

where ω0 =
√

k2 + M2
0 . Note that up to the order O(g2), it is sufficient to set Q2 = M2

0

in ΛD and ΛT; however, one has to use the full expression (3.3) inside the Θ functions.

Physically, σP
0 + σNP

0 represents the zero-temperature planar + non-planar contribu-

tions to the decay rate, while σP
a + σNP

a represents the finite-temperature planar + non-

planar contributions to the decay rate. Similarly, σP
b +σNP

b represents the finite-temperature

planar + non-planar contributions to the thermalization rate. Notice that σP
b + σNP

b is a

purely finite-temperature effect and there is no zero-temperature counterpart of it, namely

σP
b + σNP

b → 0 as T → 0.

The rates ΓD(k) and ΓT(k) depend on k, the magnitude of the spatial momentum.

If ΓD(k) = 0 for a certain k, then this mode of the Φ particle is stable in the thermal

medium. Conversely, if ΓD(k) 6= 0 for a certain k, then this mode would be able to decay

into χ1 + χ2. Kinematically, the feasibility of decay is regulated by the Heaviside function

Θ[Q2 − (M1 + M2)
2 ]. (3.6)

On the other hand, ΓT(k) 6= 0 for a certain k implies that this mode of Φ acquires a

relaxation or thermalization time scale beyond which it approaches thermal equilibrium

with the bath constituted by χ1 and χ2. This happens through the decay of χ1,2 into

χ2,1 and Φ, and their recombination, namely χ1,2 ↔ χ2,1 + Φ [33, 36]. As the modes

carrying momentum number k propagate through the thermal bath, they will be screened

or dressed by the excitations in the medium and will propagate as quasi-particles. In fact,

ΓT(k) characterizes the “decay rate” of the quasi-particles associated with Φ in the medium,

and this is precisely the relaxation or thermalization rate [33, 36]. Of course, if ΓT(k) = 0,
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then it takes an infinitely long time for these modes of Φ to approach thermal equilibrium

with the bath, which simply means that these modes can never thermalize with the bath.

Kinematically, the feasibility of thermalization is regulated by the Heaviside function

Θ[ (M1 − M2)
2 − Q2 ]. (3.7)

3.2 Momentum dependent alternation of stability and thermalizability

What we would like to study is the following. How does the conventional understanding of

the dynamics of Φ in the thermal bath change in the presence of noncommutative geometry?

Since the decay and thermalization processes depend crucially on the relative size of

Q2 compared to (M1 − M2)
2 and (M1 + M2)

2, it is useful to consider the following three

regions of Q2:

R1 : Q2 < (M1 − M2)
2, where we have ΓT 6= 0 and ΓD = 0,

R2 : (M1 − M2)
2 < Q2 < (M1 + M2)

2, where we have ΓT = ΓD = 0,

R3 : (M1 + M2)
2 < Q2, where we have ΓT = 0 and ΓD 6= 0. (3.8)

If we define Q2
C as the commutative counterpart of Q2, then it would be given by Q2

C =

M2
0 + 2IP. When one turns on the noncommutativity parameter, Q2

C changes to Q2 and

could cross over from one region to another, corresponding to turning on or turning off

the decay and/or the thermalization processes as one takes into account of the effects of

noncommutativity. What can actually happen depends on the “jump” Q2−Q2
C = INP−IP.

Since |INP| ≤ |IP|, we will always have Q2 − Q2
C < 0 if IP > 0 and Q2 − Q2

C > 0 if

IP < 0, regardless of the signs of INP. Therefore the direction of the “jump” depends

solely on the sign of IP. By setting Λ → ∞ and Q2 = M2
0 in (2.29), it is easy to obtain

that

IP > 0 when M2
0 <

(M2
1 − M2

2 )2

M2
1 + M2

2

, (3.9)

IP < 0 when M2
1 − M2

2 < M2
0 (3.10)

for any temperature T and momentum k. And for M2
0 in the intermediate region, one

obtains

IP > 0 for T < T0,

IP < 0 for T > T0,

}

when
(M2

1 − M2
2 )2

M2
1 + M2

2

≤ M2
0 ≤ M2

1 − M2
2 .

(3.11)

Here T0 is a temperature that is determined by solving IP(T0) = 0. Note that T0 depends

not just on the mass M0 of the propagating particles Φ and the properties of the thermal

bath (i.e. M1,M2), but also on the momentum k of the mode of Φ in consideration. There-

fore, as we remarked above, the impact of spacetime noncommutativity on the decay and

thermalization processes is going to be momentum dependent. We remark that due to the

rather complicated form for IP, an analytic expression for T0 is not available. Fortunately,

this is actually not needed in our analysis below which is aimed at explaining the general

physical features. In a concrete phenomenological study, a more detailed knowledge of T0

maybe needed and this can always be obtained numerically.
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As we mentioned above, the decay and thermalization processes may be turned on or

off when one takes into account of the effects of noncommutativity. This happens whenever

Q2 crosses over different regions as noncommutativity is turned on. As a result, we obtain

the following six interesting cases which may happen in principle.

1. Q2
C

in region R1: Q2
C

< (M1 − M2)
2

In the commutative picture, we have ΓD = 0 and ΓT 6= 0 which imply that Φ is stable

and cannot decay into χ1 + χ2, but it can thermalize with the bath. Once we switch

to the noncommutative bath, we may have modes such that

• Case A: (M1−M2)
2 < Q2 < (M1 +M2)

2 =⇒ ΓD = ΓT = 0. This corresponds

to the situation with IP < 0. These modes of Φ are still stable against decay into

χ1 + χ2, but they cannot thermalize with the noncommutative bath anymore.

In this case , we see that noncommutative geometry suppresses thermalization

for these modes.

• Case B: (M1 + M2)
2 < Q2 =⇒ ΓD 6= 0 and ΓT = 0. This also corresponds to

the situation with IP < 0. These modes of Φ which are originally stable in the

commutative bath, can now decay into χ1+χ2 in the noncommutative bath, but

they cannot thermalize with it anymore. In this case, noncommutative geometry

induces decay but suppresses thermalization for these modes.

2. Q2
C

in region R2: (M1 − M2)
2 < Q2

C
< (M1 + M2)

2

In the commutative picture, we have ΓD = ΓT = 0 which implies that Φ can neither

decay into χ1 + χ2 nor thermalize with the bath. Once we switch to the noncommu-

tative bath, we may have modes such that

• Case C: 0 < Q2 < (M1 − M2)
2 =⇒ ΓD = 0 and ΓT 6= 0. This corresponds

to the situation with IP > 0. These modes of Φ still cannot decay into χ1 + χ2,

but they can now thermalize with the noncommutative bath. In this case,

noncommutative geometry induces thermalization for these modes.

• Case D: (M1 + M2)
2 < Q2 =⇒ ΓD 6= 0 and ΓT = 0. This corresponds

to the situation with IP < 0. These modes of Φ can now decay into χ1 + χ2

in the noncommutative bath, but still cannot thermalize with it. In this case,

noncommutative geometry induces decay for these modes.

3. Q2
C

in region R3: (M1 + M2)
2 < Q2

C

In the commutative picture, we have ΓD 6= 0 and ΓT = 0 which imply Φ is unstable

and can decay into χ1 + χ2, but it cannot thermalize with the bath. Once we switch

to the noncommutative bath, we may have modes such that

• Case E: 0 < Q2 < (M1 − M2)
2 =⇒ ΓD = 0 and ΓT 6= 0. This corresponds to

the situation with IP > 0. These modes of Φ cannot decay into χ1 + χ2 in the

noncommutative bath anymore, but they can now thermalize with it. In this
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case, noncommutative geometry suppresses decay but induces thermalization

for these modes.

• Case F: (M1 − M2)
2 < Q2 < (M1 + M2)

2 =⇒ ΓD = ΓT = 0. This also

corresponds to the situation with IP > 0. These modes of Φ cannot decay into

χ1 + χ2 in the noncommutative bath anymore, and they still cannot thermalize

with it. In this case, noncommutative geometry suppresses decay for these

modes.

For a given thermal bath and a propagating particle, the set of masses M0, M1, M2 and

the coupling g are fixed. To decide which of the above six cases can occur, one need to

examine carefully how Q2 changes when noncommutativity is turned on. As an illustration,

we present the detailed analysis of cases A and B in the appendix A. The result is that

cases A and B can occur only if the masses of the thermal bath satisfy

M1

M2
> 4 +

√
15. (3.12)

and if M0 falls in the range of

(M2
1 − M2

2 )2

M2
1 + M2

2

< M2
0 <

5

4
(M1 − M2)

2. (3.13)

When these conditions are satisfied, then depending on the momentum k of the mode of

concern, either case A or case B or both cases can occur. See (A.17)-(A.23).

Similar analysis can be performed for the other four cases. The conclusion is similar.

For cases E and F to occur, the necessary conditions are that the masses of thermal bath

has to satisfy

M1/M2 > 11 (3.14)

and M0 has be in the range

5

6
(M1 + M2)

2 < M2
0 < M2

1 − M2
2 . (3.15)

For cases C and D, no condition is needed on M1/M2. But (3.15) is needed for the case

C and (A.6) is needed for the case D to occur. Similar conditions as (A.17)-(A.23) can be

written down for these four cases. We will skip them here.

All in all, we conclude that all of the six cases A-F listed above can occur in general.

Depending on the masses, temperature of the thermal bath and the magnitude k of the

spatial momentum of the mode of concern, the decay and thermalization rates of Φ can be

either induced or suppressed when one takes into account of noncommutativity properly.

In general, there is a window of momentum modes whose stability and/or thermalizability

properties are altered. The window depends on the temperature of the thermal bath.

Typically, the affected modes are in the high (respectively low) k regime when T is low

(respectively high).
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4 Conclusions

In this article, we studied the nonequilibrium dynamics of a scalar Φ propagating through

a noncommutative thermal bath. We showed that noncommutative geometry has a dis-

tinct impact on the nonequilibrium dynamics of particles propagating in a thermal bath

by providing a momentum dependent enhancement or suppression of their decay or ther-

malization processes. This is a combined effect of finite temperature and noncommutative

geometry. Also, we pointed out that the finite temperature T of the thermal bath can

play the role as an effective ultraviolet cut-off which rescues all the finite-temperature

non-planar quantities from any further IR/UV mixing problem.

Although our thermal bath is represented in a specific way by the two scalar particles

χ1 and χ2, our analysis is general and our conclusions should apply generally for any bosons

in contact with a noncommutative thermal bath.

A particularly interesting arena of application of our results is the early universe at

which spacetime noncommutativity may be present. Our results call for a re-examination

of some of the important processes in the early universe such as reheating after inflation,

baryogenesis and the freeze-out of superheavy dark matter candidates, which are generally

believed to occur at very high energy scales where spacetime noncommutativity could be

significant enough. It will be very interesting to re-examine these processes in details and

see how the presence of noncommutative geometry could affect the conventional picture.

This could also provide another channel for probing the presence of noncommutative geom-

etry in the early universe, in addition to the possible cosmological imprint left by inflation,

see for example [39–41].
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A Analysis of cases A and B

Modes for which the cases A and B can occur have to satisfy the following conditions:

M2
0 + 2IP < (M1 − M2)

2, (A.1)

|IP| < 0.1M2
0 , (A.2)

(M1 − M2)
2 < M2

0 + IP + INP < (M1 + M2)
2, (A.3)

(M1 + M2)
2 < M2

0 + IP + INP . (A.4)

Here the first condition specifies that one is initially in the region R1. The second condi-

tion (A.2) is a condition on the size of the thermal correction to M2
0 . We have imposed a

conservative 10% correction so as to guarantee that we are in the validity regime of the per-

turbation theory. In principle, one could have taken a different value for the RHS of (A.2),
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e.g. 0.2M2
0 . This will not modify the analysis below and the physical effects we are going to

point out are generic. The condition (A.3) is for case A and the condition (A.4) is for case B.

To analyze these conditions, we first note that cases A and B can occur only if IP < 0.

This means that it is necessary to require M2
0 > (M2

1 − M2
2 )2/(M2

1 + M2
2 ). On the other

hand, the conditions (A.1) and (A.2) imply that

1

2
[M2

0 − (M1 − M2)
2] < −IP < 0.1M2

0 . (A.5)

This is a non-empty condition for IP only if M2
0 < 5

4(M1 −M2)
2. This condition, together

with the previous condition on M2
0 , gives

(M2
1 − M2

2 )2

M2
1 + M2

2

< M2
0 <

5

4
(M1 − M2)

2. (A.6)

This specifies a non-empty range for M2
0 only if (M2

1 −M2
2 )2/(M2

1 + M2
2 ) < 5

4 (M1 −M2)
2,

i.e.
M1

M2
> 4 +

√
15. (A.7)

The condition (A.7) on the ratio M1/M2 and the condition (A.6) on M0 are common to

cases A and B and are the necessary conditions for the cases A and B to occur. Now

assume (A.7) and (A.6) are satisfied, we are guaranteed that (A.5) specifies a non-empty

range for −IP. The question is whether and for what configuration of modes will (A.5)

be satisfied. To address this, we need the form of IP as a function of k and T , which we

collect here (also for INP):

IP = − g2M2
0

16π2ω2
T 2

∞
∑

m=1

[

c+

m2 M2
1

h(m x1) +
c−

m2 M2
2

h(m x2)

]

, (A.8)

INP = − g2M2
0

16π2ω2
T 2

∞
∑

m=1

[

c+

m2 M2
1

h(m y1) +
c−

m2 M2
2

h(m y2)

]

. (A.9)

Here c± = 1 ± (M2
1 − M2

2 )/M2
0 ,

xi = Mi/T, yi =
√

1/T 2 + k2θ2 Mi, i = 1, 2 (A.10)

and

h(x) := xK1(x). (A.11)

To analyze which set of modes satisfy the condition (A.5), we note that −IP = 0 at T = 0

and −IP ∼ d × T 2 for large T ≫ M1,M2, where d ≈ g2M2
0 /(96ω2)[c+/M2

1 + c−/M2
2 ] > 0.

Therefore, for any given k, there is a temperature range

T1(k) < T < T2(k) (A.12)

such that (A.5) is satisfied. Here the temperatures T1,2(k) are determined by solving

IP(k, T1(k)) =
1

2
[M2

0 − (M1 − M2)
2] and IP(k, T2(k)) = 0.1M2

0 . (A.13)
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0

−IP(k), k fixed −IP ∼ T 2

0.1M2
0

1
2 (M2

0 − (M1 − M2)
2)

T
T1(k) T2(k)

Figure 2. Solving the condition (A.5).

So far the obtained conditions (A.7), (A.6) and (A.12) are common to both case A

and case B. Let us now proceed to analyze the conditions (A.3) and (A.4). Define the

temperatures T̃1,2 by

−(IP+INP)(k, T̃1(k)) = M2
0 −(M1+M2)

2 and −(IP+INP)(k, T̃2(k)) = M2
0 −(M1−M2)

2,

(A.14)

then for a mode with momentum k in a thermal bath with temperature T ,

case A occurs if T̃1(k) < T < T̃2(k), (A.15)

case B occurs if T < T̃1(k). (A.16)

Now since −(IP + INP) < −2IP, it follows that T̃2(k) > T1(k) for all k. This is important

since it implies that the condition (A.12) has always a non-trivial intersection with the

conditions (A.15) or (A.16). For each mode with a fixed momentum k, depending on the

relative sizes of T1(k), T2(k), T̃1(k), T̃2(k), either case A or case B or both cases can occur.

Specifically we obtain the following result:

When T̃2(k) < T2(k):

if T̃1(k) < T1(k), then case A occurs for T1(k) < T < T̃2(k); (A.17)

if T̃1(k) > T1(k), then case A occurs for T̃1(k) < T < T̃2(k); (A.18)

case B occurs for T1(k) < T < T̃1(k). (A.19)

When T̃2(k) > T2(k):

if T̃1(k) > T2(k), then case B occurs for T1(k) < T < T2(k); (A.20)

if T1(k) < T̃1(k) < T2(k), then case A occurs for T̃1(k) < T < T2(k); (A.21)

case B occurs for T1(k) < T < T̃1(k); (A.22)

if T̃1(k) < T1(k), then case A occurs for T1(k) < T < T2(k). (A.23)

– 16 –



J
H
E
P
0
2
(
2
0
1
0
)
0
9
8

This means that given the temperature T of the thermal bath, modes with different

(spatial) momentum k can behave quite differently in regard to the thermalization or sta-

bility properties. In particular only a certain window of momentum modes as specified by

the inequalities in (A.17)- (A.23) above will be affected for a given T . Since the character-

istic temperatures T1,2(k), T̃1,2(k) are monotonic decreasing function of k, it means for low

temperature T , the affected window is in the higher k regime; while for high temperature

T , the affected window is in the lower k regime. This momentum dependent alternation of

the stability or thermalizability is novel and is a combined effect of finite temperature and

noncommutative geometry.
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