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1 Introduction

Quantum mechanics and general relativity were discovered within a decade of one another close to
a century ago, and almost immediately the search for a quantum theory of gravity had begun. Ever
since it has been a puzzle as to what theoretical framework might ultimately reconcile these two
theories with one another. This reconciliation has proven to be difficult to achieve, and although
several promising proposals now exist none can yet claim complete theoretical and experimental
vindication.

1.1 Against the split brain

The long-standing nature of this difficulty has driven some physicists to a state of intellectual
despair, wherein they conclude that a crisis exists in physics which might be called the crisis of the
split brain. On one hand, quantum mechanics (and its offspring quantum field theory) provides
an incredibly successful description of all known non-gravitational phenomena, with agreement
between predictions and experiment sometimes taking place at the part-per-billion level (for a
recent precision test of QED, see for example [132]; a survey of precision electroweak measurements
can be found in an article by Langacker [106]). On the other hand, classical general relativity is
also extremely successful, with its predictions being well tested within the solar system and for
some binary pulsar systems; a survey of tests of gravity with references may be found in [156].
(The cosmological evidence for dark matter and dark energy is sometimes proposed as indicating
the failure of gravity over long distances – perhaps the most successful such proposal for galaxies is
given by [120] – but at present the evidence for new gravitational physics at large distances does not
seem compelling; a summary of some of the observational difficulties of replacing dark matter with
new physics at long distances is given in [4], see, however, [121].) The perceived crisis is the absence
of an over-arching theoretical framework within which both successes can be accommodated. Our
brains are effectively split into two incommunicative hemispheres, with quantum physics living in
one and classical general relativity in the other.

The absence of such a framework would indeed be a crisis for theoretical physics, since real
theoretical predictions are necessarily approximate. Controllable results always require some un-
derstanding of the size of the contributions being neglected in any given calculation. If quantum
effects in general relativity cannot be quantified, this must undermine our satisfaction with the
experimental success of its classical predictions.

It is the purpose of this article to present the modern point of view on these issues, which has
emerged since the early 1980’s. According to this point of view there is no such crisis, because the
problems of quantizing gravity within the experimentally accessible situations are similar to those
which arise in a host of other non-gravitational applications throughout physics. As such, the size
of quantum corrections can be safely estimated and are extremely small. The theoretical framework
which allows this quantification is the formalism of effective field theories, whose explanation makes
up the better part of this article. In so doing we shall see that although there can be little doubt of
the final outcome, the explicit determination of the size of sub-leading quantum effects in gravity
has in many cases come only relatively recently, and a complete quantitative analysis of the size
of quantum corrections remains a work in progress.

1.2 Identifying where the problems lie

This is not to say that there are no challenging problems remaining in reconciling quantum me-
chanics with gravity. On the contrary, many of the most interesting issues remain to be solved,
including the identification of what the right observables should be, and understanding how space
and time might emerge from more microscopic considerations. For the rest of the discussion it is
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useful to separate these deep, unsolved issues of principle from the more prosaic, technical problem
of general relativity’s non-renormalizability.

There have been a number of heroic attempts to quantize gravity along the lines of other field
theories [81, 55, 6, 71, 138, 54, 70, 113, 50, 51, 53, 25, 38, 7, 8, 9, 10, 14, 16, 15, 11, 12, 13, 18], and
it was recognized early on that general relativity is not renormalizable. It is this technical problem
of non-renormalizability which in practice has been the obstruction to performing quantum calcu-
lations with general relativity. As usually stated, the difficulty with non-renormalizable theories is
that they are not predictive, since the obtention of well-defined predictions potentially requires an
infinite number of divergent renormalizations.

It is not the main point of the present review to recap the techniques used when quantizing the
gravitational field, nor to describe in detail its renormalizability. Rather, this review is intended to
describe the modern picture of what renormalization means, and why non-renormalizable theories
need not preclude making meaningful predictions. This point of view is now well-established in
many areas – such as particle, nuclear, and condensed-matter physics – where non-renormalizable
theories arise. In these other areas of physics predictions can be made with non-renormalizable the-
ories (including quantum corrections) and the resulting predictions are well-verified experimentally.
The key to making these predictions is to recognize that they must be made within the context
of a low-energy expansion, in powers of E/M (energy divided by some heavy scale intrinsic to the
problem). Within the validity of this expansion theoretical predictions are under complete control.

The lesson for quantum gravity is clear: Non-renormalizability is not in itself an obstruction to
performing predictive quantum calculations, provided the low-energy nature of these predictions
in powers of E/M , for some M , is borne in mind. What plays the role of the heavy scale M
in the case of quantum gravity? It is tempting to identify this scale with the Planck mass Mp,
where M−2

p = 8πG (with G denoting Newton’s constant), and in some circumstances this is the
right choice. But as we shall see M need not be Mp, and for some applications might instead be
the electron mass me, or some other scale. One of the points of quantifying the size of quantum
corrections is to identify more precisely what the important scales are for a given quantum-gravity
application.

Once it is understood how to use non-renormalizable theories, the size of quantum effects can be
quantified, and it becomes clear where the real problems of quantum gravity are pressing and where
they are not. In particular, the low-energy expansion proves to be an extremely good approximation
for all of the present experimental tests of gravity, making quantum corrections negligible for these
tests. By contrast, the low-energy nature of quantum-gravity predictions implies that quantum
effects are important where gravitational fields become very strong, such as inside black holes or
near cosmological singularities. This is what makes the study of these situations so interesting: it
is through their study that progress on the more fundamental issues of quantum gravity is likely
to come.

1.3 A road map

The remainder of this article is organized in the following way:
Section 2 about effective field theories does not involve gravity at all, but instead first describes

why effective field theories are useful in other branches of physics. The discussion is kept concrete
by considering a simple toy model, for which it is argued how some applications make it useful
to keep track of how small ratios of energy scales appear in physical observables. In particular,
considerable simplification can be achieved if an expansion in small energy ratios is performed as
early as possible in the calculation of low-energy observables. The theoretical tool for achieving
this simplification is the effective Lagrangian, and its definition and use is briefly summarized using
the toy model as an explicit example.

Section 3, which deals with quantum gravity as an effective theory, describes how the tools of
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the previous section may be applied to calculating quantum effects including the gravitational field.
In particular, it is shown how to make predictions despite general relativity’s non-renormalizability,
since effective Lagrangians are generically not renormalizable. As we shall see, however, some of
the main results one would like to have regarding the size of quantum corrections to arbitrary loop
orders remain incomplete.

In Section 4 explicit applications of these ideas are described in this section, which use the
above results to compute quantum corrections to several gravitational results for two kinds of
sources. These calculations compute the leading quantum corrections to Newton’s Law between
two slowly-moving point particles, and to the gravitational force between two cosmic strings (both
in 3 + 1 spacetime dimensions).

In the final Section 5 conclusions are briefly summarized.
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2 Effective Field Theories

This section describes the effective-Lagrangian technique within the context of a simple toy model,
closely following the discussion of [28].

In all branches of theoretical physics a key part of any good prediction is a careful assessment
of the theoretical error which the prediction carries. Such an assessment is a precondition for any
detailed quantitative comparison with experiment. As is clear from numerous examples throughout
physics, this assessment of error usually is reliably determined based on an understanding of the
small quantities which control the corrections to the approximations used when making predictions.
Perhaps the most famous example of such a small quantity might be the fine-structure constant,
α = e2/~c, which quantifies the corrections to electromagnetic predictions of elementary particle
properties or atomic energy levels.

2.1 The utility of low-energy approximations

It sometimes happens that predictions are much more accurate than would be expected based on
an assessment of the approximations on which they appear to be based. A famous example of
this is encountered in the precision tests of quantum electrodynamics, where the value of the fine-
structure constant, α, was until recently obtained using the Josephson effect in superconductivity.

A DC potential difference applied at the boundary between two superconductors can produce an
AC Josephson current whose frequency is precisely related to the size of the applied potential and
the electron’s charge. Precision measurements of frequency and voltage are in this way converted
into a precise measurement of e/~, and so of α. But use of this effect to determine α only makes
sense if the predicted relationship between frequency and voltage is also known to an accuracy
which is better than the uncertainty in α.

It is, at first sight, puzzling how such an accurate prediction for this effect can be possible.
After all, the prediction is made within the BCS theory of superconductivity (see, for example,
[139]), which ignores most of the mutual interactions of electrons, focussing instead on a particular
pairing interaction due to phonon exchange. Radical though this approximation might appear to
be, the theory works rather well (in fact, surprisingly well), with its predictions often agreeing
with experiment to within several percent. But expecting successful predictions with an accuracy
of parts per million or better would appear to be optimistic indeed!

The astounding theoretical accuracy required to successfully predict the Josephson frequency
may be understood at another level, however. The key observation is that this prediction does
not rely at all on the details of the BCS theory, depending instead only on the symmetry-breaking
pattern which it predicts. Once it is known that a superconductor spontaneously breaks the U(1)
gauge symmetry of electromagnetism, the Josephson prediction follows on general grounds in the
low-energy limit (for a discussion of superconductors in an effective-Lagrangian spirit aimed at a
particle-physics audience see [151]). The validity of the prediction is therefore not controlled by the
approximations made in the BCS theory, since any theory with the same low-energy symmetry-
breaking pattern shares the same predictions.

The accuracy of the predictions for the Josephson effect are therefore founded on symmetry
arguments, and on the validity of a low-energy approximation. Quantitatively, the low-energy
approximation involves the neglect of powers of the ratio of two scales, ω/Ω, where ω is the low
energy scale of the observable under consideration – like the applied voltage in the Josephson effect
– and Ω is the higher energy scale – such as the superconducting gap energy – which is intrinsic
to the system under study.

Indeed, arguments based on a similar low-energy approximation may also be used to explain
the surprising accuracy of many other successful models throughout physics, including the BCS
theory itself [130, 135, 136, 35]. This is accomplished by showing that only the specific interactions
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used by the BCS theory are relevant at low energies, with all others being suppressed in their
effects by powers of a small energy ratio.

Although many of these arguments were undoubtedly known in various forms by the experts in
various fields since very early days, the systematic development of these arguments into precision
calculational techniques has happened more recently. With this development has come considerable
cross-fertilization of techniques between disciplines, with the realization that the same methods
play a role across diverse disciplines within physics.

The remainder of this article briefly summarizes the techniques which have been developed to
exploit low-energy approximations. These are most efficiently expressed using effective-Lagrangian
methods, which are designed to take advantage of the simplicity of the low-energy limit as early
as possible within a calculation. The gain in simplicity so obtained can be the decisive difference
between a calculation’s being feasible rather than being too difficult to entertain.

Besides providing this kind of practical advantage, effective-Lagrangian techniques also bring
real conceptual benefits because of the clear separation they permit between of the effects of
different scales. Both of these kinds of advantages are illustrated here using explicit examples.
First Section 2.2 presents a toy model involving two spinless particles to illustrate the general
method, as well as some of its calculational advantages. This is followed by a short discussion
of the conceptual advantages, with quantum corrections to classical general relativity, and the
associated problem of the non-renormalizability of gravity, taken as the illustrative example.

2.2 A toy example

In order to make the discussion as concrete as possible, consider the following model for a single
complex scalar field φ:

L = −∂µφ∗∂µφ− V (φ∗φ), (1)

with

V =
λ2

4
(
φ∗φ− v2

)2
. (2)

This theory enjoys a continuous U(1) symmetry of the form φ → eiωφ, where the parameter ω is a
constant. The two parameters of the model are λ and v. Since v is the only dimensionful quantity
it sets the model’s overall energy scale.

The semiclassical approximation is justified if the dimensionless quantity λ should be sufficiently
small. In this approximation the vacuum field configuration is found by minimizing the system’s
energy density, and so is given (up to a U(1) transformation) by φ = v. For small λ the spectrum
consists of two weakly-interacting particle types described by the fields R and I, where φ =(
v + 1√

2
R

)
+ i√

2
I. To leading order in λ the particle masses are mI = 0 and mR = λv.

The low-energy regime in this model is E � mR. The masslessness of I ensures the existence of
degrees of freedom in this regime, with the potential for nontrivial low-energy interactions, which
we next explore.

2.2.1 Massless-particle scattering

The interactions amongst the particles in this model are given by the scalar potential:

V =
λ2

16

(
2
√

2 vR+R2 + I2
)2

. (3)

Imagine using the potential of Equation (3) to calculate the amplitude for the scattering of I
particles at low energies to lowest-order in λ. For example, the Feynman graphs describing tree-
level I–R scattering are given in Figure 1. The S-matrix obtained by evaluating the analogous

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-5

http://www.livingreviews.org/lrr-2004-5


10 Cliff P. Burgess

Figure 1: The Feynman graphs responsible for tree-level R – I scattering in the toy model. Here
solid lines denote R particles and dashed lines represent I particles.

tree-level diagrams for I self-scattering is proportional to the following invariant amplitude:

A = −3λ2

2
+

(
λ2v√

2

)2 [
1

(s + r)2 + m2
R − iε

+
1

(r − r′)2 + m2
R − iε

+
1

(r − s′)2 + m2
R − iε

]
, (4)

where sµ and rµ (and s′µ and r′µ) are the 4-momenta of the initial (and final) particles.
An interesting feature of this amplitude is that when it is expanded in powers of external

four-momenta, both its leading and next-to-leading terms vanish. That is

A =

[
−3λ2

2
+

3
m2
R

(
λ2v√

2

)2
]

+
2

m4
R

(
λ2v√

2

)2

[−r · s + r · r′ + r · s′] +O(quartic in momenta)

= 0 +O(quartic in momenta). (5)

The last equality uses conservation of 4-momentum, sµ + rµ = s′µ + r′µ, and the massless mass-
shell condition r2 = 0. Something similar occurs for R–I scattering, which also vanishes due to a
cancellation amongst the graphs of Figure 1 in the zero-momentum limit.

Clearly the low-energy particles interact more weakly than would be expected given a cursory
inspection of the scalar potential, Equation (3), since at tree level the low-energy scattering rate
is suppressed by at least eight powers of the small energy ratio r = E/mR. The real size of the
scattering rate might depend crucially on the relative size of r and λ2, should the vanishing of the
leading low-energy terms turn out to be an artifact of leading-order perturbation theory.

If I scattering were of direct experimental interest, one can imagine considerable effort being
invested in obtaining higher-order corrections to this low-energy result. And the final result proves
to be quite interesting: As may be verified by explicit calculation, the first two terms in the
low-energy expansion of A vanish order-by-order in perturbation theory. Furthermore, a similar
suppression turns out also to hold for all other amplitudes involving I particles, with the n-point
amplitude for I scattering being suppressed by n powers of r.

Clearly the hard way to understand these low-energy results is to first compute to all orders in
λ and then expand the result in powers of r. A much more efficient approach exploits the simplicity
of small r before calculating scattering amplitudes.

2.3 The toy model revisited

The key to understanding this model’s low-energy limit is to recognize that the low-energy suppres-
sion of scattering amplitudes (as well as the exact masslessness of the light particle) is a consequence
of the theory’s U(1) symmetry. (The massless state has these properties because it is this symme-
try’s Nambu–Goldstone boson. The earliest general formulation of non-Abelian Goldstone-boson
interactions arose through the study of low-energy pion interactions [145, 146, 32, 73]; for reviews
of Goldstone boson properties see [84, 107]; see also [148, 29].) The simplicity of the low-energy
behaviour is therefore best displayed by

• making the symmetry explicit for the low-energy degrees of freedom, and

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-5

http://www.livingreviews.org/lrr-2004-5


Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory 11

• performing the low-energy approximation as early as possible.

2.3.1 Exhibiting the symmetry

The U(1) symmetry can be made to act exclusively on the field which represents the light particle
by parameterizing the theory using a different set of variables than I and R. To this end imagine
instead using polar coordinates in field space

φ(x) = χ(x)eiθ(x). (6)

In terms of θ and χ the action of the U(1) symmetry is simply θ → θ + ω, and the model’s
Lagrangian becomes

L = −∂µχ∂µχ− χ2∂µθ∂µθ − V (χ2). (7)

The semiclassical spectrum of this theory is found by expanding L in powers of the canonically-
normalized fluctuations, χ′ =

√
2(χ− v) and θ′ =

√
2 v θ, about the vacuum χ = v, revealing that

χ′ describes the mass-mR particle while θ′ represents the massless particle.
With the U(1) symmetry realized purely on the massless field θ, we may expect good things to

happen if we identify the low-energy dynamics.

2.3.2 Timely performance the low-energy approximation

To properly exploit the symmetry of the low-energy limit we integrate out all of the high-energy
degrees of freedom as the very first step, leaving the inclusion of the low-energy degrees of freedom
to last. This is done most efficiently by computing the following low-energy effective (or Wilson)
action.

A conceptually simple (but cumbersome in practice) way to split degrees of freedom into ‘heavy’
and ‘light’ categories is to classify all field modes in momentum space as heavy if (in Euclidean
signature) they satisfy p2 + m2 > Λ2,where m is the corresponding particle mass and Λ is an
appropriately chosen cutoff.

Light modes are then all of those which are not heavy. The cutoff Λ, which defines the boundary
between these two kinds of modes,is chosen to lie well below the high-energy scale (i.e., well below
mR in the toy model),but is also chosen to lie well above the low-energy scale of ultimate interest
(like the centre-of-mass energies E of low-energy scattering amplitudes). Notice that in the toy
model the heavy degrees of freedom defined by this split include all modes of the field χ′, as well
as the high-frequency components of the massless field θ′.

If h and ` schematically denote the fields which are, respectively, heavy or light in this character-
ization, then the influence of heavy fields on light-particle scattering at low energies is completely
encoded in the following effective Lagrangian:

exp
[
i

∫
d4xLeff(`,Λ)

]
=

∫
DhΛ exp

[∫
d4xL(`, h)

]
. (8)

The Λ-dependence which is introduced by the low-energy/high-energy split of the integration
measure is indicated explicitly in this equation.

Physical observables at low energies are now computed by performing the remaining path
integral over the light degrees of freedom only. By virtue of its definition, each configuration in
the integration over light fields is weighted by a factor of exp

[
i
∫

d4xLeff(`)
]

implying that the
effective Lagrangian weights the low-energy amplitudes in precisely the same way as the classical
Lagrangian does for the integral over both heavy and light degrees of freedom. In detail, the
effects of virtual contributions of heavy states appear within the low-energy theory through the
contributions of new effective interactions, such as are considered in detail for the toy model in
some of the next sections (see, e.g., Sections 2.3.3, 2.3.4, and 2.5.2).
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Although this kind of low-energy/high-energy split in terms of cutoffs most simply illustrates
the conceptual points of interest, in practical calculations it is usually dimensional regularization
which is more useful. This is particularly true for theories (like general relativity) involving gauge
symmetries, which can be conveniently kept manifest using dimensional regularization. We there-
fore return to this point in subsequent sections to explain how dimensional regularization can be
used with an effective field theory.

2.3.3 Implications for the low-energy limit

Now comes the main point. When applied to the toy model, the condition of symmetry and the
restriction to the low-energy limit together have strong implications for Leff(θ). Specifically:

• Invariance of Leff(θ) under the symmetry θ → θ+ω implies Leff can depend on θ only through
the invariant quantity ∂µθ.

• Interest in the low-energy limit permits the expansion of Leff in powers of derivatives of θ.
Because only low-energy functional integrals remain to be performed, higher powers of ∂µθ
correspond in a calculable way to higher suppression of observables by powers of E/mR.

Combining these two observations leads to the following form for Leff :

Leff = −v2 ∂µθ ∂µθ + a(∂µθ ∂µθ)2 +
b

m2
R

(∂µθ ∂µθ)3 +
c

m2
R

(∂µθ ∂µθ)∂λ∂λ(∂νθ ∂νθ) + . . . , (9)

where the ellipses represent terms which involve more than six derivatives, and so more than two
inverse powers of mR.

A straightforward calculation confirms the form (9) in perturbation theory, but with the addi-
tional information

apert =
1

4λ2
+O(λ0), bpert = − 1

4λ2
+O(λ0), cpert =

1
4λ2

+O(λ0). (10)

In this formulation it is clear that each additional factor of θ is always accompanied by a
derivative, and so implies an additional power of r in its contribution to all light-particle scattering
amplitudes. Because Equation (9) is derived assuming only general properties of the low energy
effective Lagrangian, its consequences (such as the suppression by rn of low-energy n-point am-
plitudes) are insensitive of the details of the underlying model. They apply, in particular, to all
orders in λ.

Conversely, the details of the underlying physics only enter through specific predictions, such
as Equations (10), for the low-energy coefficients a, b, and c. Different models having a U(1)
Goldstone boson in their low-energy spectrum can differ in the low-energy self-interactions of this
particle only through the values they predict for these coefficients.

2.3.4 Redundant interactions

The effective Lagrangian (9) does not contain all possible polynomials of ∂µθ. For example, two
terms involving 4 derivatives which are not written are

Lredundant = d �θ �θ + e ∂µθ �∂µθ, (11)

where d and e are arbitrary real constants. These terms are omitted because their inclusion would
not alter any of the predictions of Leff . Because of this, interactions such as those in Equation (11)
are known as redundant interactions.
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There are two reasons why such terms do not contribute to physical observables. The first
reason is the old saw that states that total derivatives may be dropped from an action. More
precisely, such terms may be integrated to give either topological contributions or surface terms
evaluated at the system’s boundary. They may therefore be dropped provided that none of the
physics of interest depends on the topology or what happens on the system’s boundaries. (See,
however, [2] and references therein for a concrete example where boundary effects play an important
role within an effective field theory.) Certainly boundary terms are irrelevant to the form of the
classical field equations far from the boundary. They also do not contribute perturbatively to
scattering amplitudes, as may be seen from the Feynman rules which are obtained from a simple
total derivative interaction like

∆L = g ∂µ(∂µθ�θ) = g (�θ�θ + ∂µθ�∂µθ) , (12)

since these are proportional to

g(p2q2 + pµqµq2)δ4(p + q) = g q2pµ(pµ + qµ)δ4(p + q) = 0. (13)

This shows that the two interactions of Equation (11) are not independent, since we can integrate
by parts to replace the couplings (d, e) with (d′, e′) = (d− e, 0).

The second reason why interactions might be physically irrelevant (and so redundant) is if they
may be removed by performing a field redefinition. For instance under the infinitesimal redefinition
δθ = A �θ, the leading term in the low-energy action transforms to

δ(−v2 ∂µθ∂µθ) = −2Av2 ∂µθ�∂µθ. (14)

This redefinition can be used to set the effective coupling e to zero, simply by choosing 2Av2 = e.
This argument can be repeated order-by-order in powers of 1/mR to remove more and more terms
in Leff without affecting physical observables.

Since the variation of the lowest-order action is always proportional to its equations of motion,
it is possible to remove in this way any interaction which vanishes when evaluated at the solution
to the lower-order equations of motion. Of course, a certain amount of care must be used when so
doing. For instance, if our interest is in how the θ-field affects the interaction energy of classical
sources, we must add a source coupling ∆L = Jµ∂µθ to the Lagrangian. Once this is done
the lowest-order equations of motion become 2v2�θ = ∂µJµ, and so an effective interaction like
�θ�θ is no longer completely redundant. It is instead equivalent to the contact interactions like
(∂µJµ)2/(4v4).

2.4 Lessons learned

It is clear that the kind of discussion given for the toy model can be performed equally well for
any other system having two well-separated energy scales. There is a number of features of this
example which also generalize to these other systems. It is the purpose of this section to briefly
list some of these features.

2.4.1 Why are effective Lagrangians not more complicated?

Leff as computed in the toy model is not a completely arbitrary functional of its argument θ. For
example, Leff is real and not complex, and it is local in the sense that (to any finite order in 1/mR)
it consists of a finite sum of powers of the field θ and its derivatives, all evaluated at the same
point.

Why should this be so? Both of these turn out to be general features (so long as only massive
degrees of freedom are integrated out) which are inherited from properties of the underlying physics
at higher energies:
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Reality: The reality of Leff is a consequence of the unitarity of the underlying theory, and the
observation that the degrees of freedom which are integrated out to obtain Leff are excluded
purely on the grounds of their energy. As a result, if no heavy degrees of freedom appear as
part of an initial state, energy conservation precludes their being produced by scattering and
so appearing in the final state.

Since Leff is constructed to reproduce this time evolution of the full theory, it must be real
in order to give a Hermitian Hamiltonian as is required by unitary time evolution1.

Locality: The locality of Leff is also a consequence of excluding high-energy states in its defini-
tion, together with the Heisenberg Uncertainty Relations. Although energy and momentum
conservation preclude the direct production of heavy particles (like those described by χ in
the toy model) from an initial low-energy particle configuration, it does not preclude their
virtual production.

That is, heavy particles may be produced so long as they are then re-destroyed sufficiently
quickly. Such virtual production is possible because the Uncertainty Relations permit energy
not to be precisely conserved for states which do not live indefinitely long. A virtual state
whose production requires energy non-conservation of order ∆E ∼ M therefore cannot live
longer than ∆t ∼ 1/M , and so its influence must appear as being local in time when observed
only with probes having much smaller energy. Similar arguments imply locality in space for
momentum-conserving systems. (This is a heuristic explanation of what goes under the name
operator product expansion [157, 41] in the quantum field theory literature.)

Since it is the mass M of the heavy particle which sets the scale over which locality applies
once it is integrated out, it is 1/M which appears with derivatives of low-energy fields when
Leff is written in a derivative expansion.

2.5 Predictiveness and power counting

The entire rationale of an effective Lagrangian is to incorporate the virtual effects of high-energy
particles in low-energy processes, order-by-order in powers of the small ratio r of these two scales
(e.g., r = E/mR in the toy model). In order to use an effective Lagrangian it is therefore necessary
to know which terms contribute to physical processes to any given order in r.

This determination is explicitly possible if the low-energy degrees of freedom are weakly in-
teracting, because in this case perturbation theory in the weak interactions may be analyzed
graphically, permitting the use of power-counting arguments to systematically determine where
powers of r originate. Notice that the assumption of a weakly-interacting low-energy theory does
not presuppose the underlying physics to be also weakly interacting. For instance, for the toy
model the Goldstone boson of the low-energy theory is weakly interacting provided only that the
U(1) symmetry is spontaneously broken, since its interactions are all suppressed by powers of r.
Notice that this is true independent of the size of the coupling λ of the underlying theory.

For example, in the toy model the effective Lagrangian takes the general form

Leff = v2m2
R

∑
id

cid

md
R
Oid, (15)

where the sum is over interactions Oid, involving i powers of the dimensionless field θ and d
derivatives. The power of mR premultiplying each term is chosen to ensure that the coefficient cid

is dimensionless. (For instance, the interaction (∂µθ ∂µθ)2 has i = d = 4.) There are three useful
properties which all of the operators in this sum must satisfy:

1There can be circumstances for which energy is not the criterion used to define the effective theory, and for
which Leff is not real. The resulting failure of unitarity in the effective theory reflects the possibility in these theories
of having states in the effective theory converting into states that have been removed in its definition.
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1. d must be even by virtue of Lorentz invariance.

2. Since the sum is only over interactions, it does not include the kinetic term, which is the
unique term for which d = i = 2.

3. The U(1) symmetry implies every factor of θ is differentiated at least once, and so d ≥ i.
Furthermore, any term linear in θ must therefore be a total derivative, and so may be omitted,
implying i ≥ 2 without loss.

2.5.1 Power-counting low-energy Feynman graphs

It is straightforward to track the powers of v and mR that interactions of the form (15) contribute
to an `-loop contribution to the amplitude AE(E) for the scattering of Ni initial Goldstone bosons
into Nf final Goldstone bosons at centre-of-mass energy E. The label E = Ni +Nf here denotes the
number of external lines in the corresponding graph. (The steps presented in this section closely
follow the discussion of [29].)

With the desire of also being able to include later examples, consider the following slight
generalization of the Lagrangian of Equation (15):

Leff = f4
∑

n

cn

Mdn
On

(
φ

v

)
. (16)

Here φ denotes a generic boson field, cn are again dimensionless coupling constants which we
imagine to be at most O(1), and f , M , and v are mass scales of the underlying problem. The
sum is again over operators which are powers of the fields and their derivatives, and dn is the
dimension of the operator On, in powers of mass. For example, in the toy-model application we
have f2 = v mR, M = mR, and we have written θ = φ/v. In the toy-model example the sum over
n corresponds to the sum over i and d, and dn = d.

Imagine using this Lagrangian to compute a scattering amplitude AE(E) involving the scatter-
ing of E relativistic particles whose energy and momenta are of order E. We wish to focus on the
contribution to A due to a Feynman graph having I internal lines and Vik vertices. The labels i
and k here indicate two characteristics of the vertices: i counts the number of lines which converge
at the vertex, and k counts the power of momentum which appears in the vertex. Equivalently, i
counts the number of powers of the fields φ which appear in the corresponding interaction term in
the Lagrangian, and k counts the number of derivatives of these fields which appear there.

2.5.1.1 Some useful identities The positive integers I, E, and Vik, which characterize the
Feynman graph in question are not all independent since they are related by the rules for con-
structing graphs from lines and vertices.

The first such relation can be obtained by equating two equivalent ways of counting how internal
and external lines can end in a graph. On the one hand, since all lines end at a vertex, the number
of ends is given by summing over all of the ends which appear in all of the vertices:

∑
ik i Vik. On

the other hand, there are two ends for each internal line, and one end for each external line in the
graph: 2I + E. Equating these gives the identity which expresses the ‘conservation of ends’:

2I + E =
∑
ik

i Vik, conservation of ends. (17)

A second useful identity gives the number of loops L for each (connected) graph:

L = 1 + I −
∑
ik

Vik, definition of L. (18)
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For simple planar graphs, this last equation agrees with the intuitive notion of what the number
of loops in a graph means, since it expresses a topological invariant which states how the Euler
number for a disc can be expressed in terms of the number of edges, corners, and faces of the
triangles in one of its triangularization. For graphs which do not have the topology of a plane,
Equation (18) should instead be read as defining the number of loops.

2.5.1.2 Dimensional estimates We now collect the dependence of AE(a) on the parameters
appearing in Leff . Reading the Feynman rules from the Lagrangian of Equation (16) shows that
the vertices in the Feynman graph contribute the following factor:

(Vertex) =
∏
ik

[
i(2π)4δ4(p)

( p

M

)k
(

f4

vi

)]Vik

, (19)

where p generically denotes the various momenta running through the vertex. Similarly, there are
I internal lines in the graph, each of which contributes the additional factor:

(Internal line) =
[
−i

∫
d4p

(2π)4

(
M2v2

f4

)
1

p2 + m2

]
, (20)

where, again, p denotes the generic momentum flowing through the line. m generically denotes
the mass of any light particles which appear in the effective theory, and it is assumed that the
kinetic terms which define their propagation are those terms in Leff involving two derivatives and
two powers of the fields φ.

As usual for a connected graph, all but one of the momentum-conserving delta-functions in
Equation (19) can be used to perform one of the momentum integrals in Equation (20). The one
remaining delta-function which is left after doing so depends only on the external momenta δ4(q),
and expresses the overall conservation of four-momentum for the process. Future formulae are less
cluttered if this factor is extracted once and for all, by defining the reduced amplitude Ã by

AE(E) = i(2π)4δ4(q) ÃE(E). (21)

Here q generically represents the external four-momenta of the process, whose components are of
order E in size.

The number of four-momentum integrations which are left after having used all of the momentum-
conserving delta-functions is then I −

∑
ik Vik + 1 = L. This last equality uses the definition,

Equation (18), of the number of loops L.
We now estimate the result of performing the integration over the internal momenta. To

do so it is most convenient to regulate the ultraviolet divergences which arise using dimensional
regularization2. For dimensionally-regularized integrals, the key observation is that the size of
the result is set on dimensional grounds by the light masses or external momenta of the theory.
That is, if all external energies q are comparable to (or larger than) the masses m of the light
particles whose scattering is being calculated, then q is the light scale controlling the size of
the momentum integrations, so dimensional analysis implies that an estimate of the size of the
momentum integrations is∫

· · ·
∫ (

dnp

(2π)n

)A
pB

(p2 + q2)C
∼

(
1
4π

)2A

qnA+B−2C , (22)

with a dimensionless pre-factor which depends on the dimension n of spacetime, and which may
be singular in the limit that n → 4. Notice that the assumption that q is the largest relevant scale
in the low-energy theory explicitly excludes the case of the scattering of non-relativistic particles.

2We return below to a discussion of how effective Lagrangians can be defined using dimensional regularization.
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One might worry whether such a simple dimensional argument can really capture the asymp-
totic dependence of a complicated multi-dimensional integral whose integrand is rife with potential
singularities. The ultimate justification for this estimate lies with general results like Weinberg’s
theorem [143, 85, 129, 79], which underly the power-counting analyses of renormalizability. These
theorems ensure that the simple dimensional estimates capture the correct behaviour up to loga-
rithms of the ratios of high- and low-energy mass scales.

With this estimate for the size of the momentum integrations, we find the following contribution
to the amplitude ÃE(E): ∫

· · ·
∫ (

d4p

(2π)4

)L
pX

(p2 + q2)I
∼

(
1
4π

)2L

qY, (23)

where X =
∑

ik kVik and Y = 4L − 2I +
∑

ik kVik. Liberal use of the identities (17) and (18),
and taking q ∼ E, allows this to be rewritten as the following estimate:

ÃE(E) ∼ f4

(
1
v

)E (
M2

4πf2

)2L (
E

M

)P

, (24)

with P = 2 + 2L +
∑

ik(k− 2)Vik. Equivalently, if we group terms depending on L, Equation (24)
may also be written as

ÃE(E) ∼ f4

(
1
v

)E (
ME

4πf2

)2L (
E

M

)P ′

, (25)

with P ′ = 2 +
∑

ik(k − 2)Vik.
Equation (24) is the principal result of this section. Its utility lies in the fact that it links

the contributions of the various effective interactions in the effective Lagrangian (16) with the
dependence of observables on small energy ratios such as r = E/M . As a result it permits the
determination of which interactions in the effective Lagrangian are required to reproduce any given
order in E/M in physical observables.

Most importantly, Equation (24) shows how to calculate using non-renormalizable theories. It
implies that even though the Lagrangian can contain arbitrarily many terms, and so potentially
arbitrarily many coupling constants, it is nonetheless predictive so long as its predictions are
only made for low-energy processes, for which E/M � 1. (Notice also that the factor (M/f)4L

in Equation (24) implies, all other things being equal, that the scale f cannot be taken to be
systematically smaller than M without ruining the validity of the loop expansion in the effective
low-energy theory.)

2.5.2 Application to the toy model

We now apply this power-counting estimate to the toy model discussed earlier. Using the relations
f2 = v mR and M = mR, we have

AE(E) ∼ v2m2
R

(
1
v

)E (mR

4πv

)2L
(

E

mR

)P

, (26)

where P = 2 + 2L +
∑

id(d − 2)Vid. As above, Vid counts the number of times an interaction
involving i powers of fields and d derivatives appears in the amplitude. An equivalent form for this
expression is

AE(E) ∼ v2E2

(
1
v

)E (
E

4πv

)2L ∏
i

∏
d>2

(
E

mR

)(d−2)Vid

. (27)

Equations (26) and (27) have several noteworthy features:
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• The condition d ≥ i ≥ 2 ensures that all of the powers of E appearing in AE are positive.
Furthermore, since d = 2 only occurs for the kinetic term, d ≥ 4 for all interactions, implying
AE is suppressed by at least 4 powers of E, and higher loops cost additional powers of E.
Furthermore, it is straightforward to identify the graphs which contribute to AE to any fixed
power of E.

• As is most clear from Equation (27), perturbation theory in the effective theory relies only
on the assumptions E � 4πv and E � mR. In particular, it does not rely on the ratio
mR/(4πv) being small. Since mR = λv in the underlying toy model, this ratio is simply of
order λ/(4π), showing how weak coupling for the Goldstone boson is completely independent
of the strength of the couplings in the underlying theory.

To see how Equations (26) and (27) are used, consider the first few powers of E in the toy
model. For any E the leading contributions for small E come from tree graphs, L = 0. The tree
graphs that dominate are those for which

∑′
id(d − 2)Vid takes the smallest possible value. For

example, for 2-particle scattering E = 4, and so precisely one tree graph is possible for which∑′
id(d− 2)Vid = 2, corresponding to V44 = 1 and all other Vid = 0. This identifies the single graph

which dominates the 4-point function at low energies, and shows that the resulting leading energy
dependence is A4(E) ∼ E4/(v2 m2

R).
The utility of power-counting really becomes clear when subleading behaviour is computed,

so consider the size of the leading corrections to the 4-point scattering amplitude. Order E6

contributions are achieved if and only if either (i) L = 1 and Vi4 = 1 with all others zero, or
(ii) L = 0 and

∑
i (4Vi6 + 2Vi4) = 4. Since there are no d = 2 interactions, no one-loop graphs

having 4 external lines can be built using precisely one d = 4 vertex, and so only tree graphs can
contribute. Of these, the only two choices allowed by E = 4 at order E6 are therefore the choices
V46 = 1 or V34 = 2. Both of these contribute a result of order A4(E) ∼ E6/(v2 m4

R).

2.6 The effective Lagrangian logic

With the power-counting results in hand we can see how to calculate predictively – including loops
– using the non-renormalizable effective theory. The logic follows these steps:

1. Choose the accuracy desired in the answer. (For instance an accuracy of 1% might be desired
in a particular scattering amplitude.)

2. Determine the order in the small ratio of scales (i.e., r = E/mR in the toy model) which
is required in order to achieve the desired accuracy. (For instance if r = 0.1 then O(r2) is
required to achieve 1% accuracy.)

3. Use the powercounting results to identify which terms in Leff can contribute to the observable
of interest to the desired order in r. At any fixed order in r this always requires a finite number
(say: N) of terms in Leff which can contribute.

4. (a) If the underlying theory is known, and is calculable, then compute the required coef-
ficients of the N required effective interactions to the accuracy required. (In the toy
model this corresponds to calculating the coefficients a, b, c, etc.)

(b) If the underlying theory is unknown, or is too complicated to permit the calculation
of Leff , then leave the N required coefficients as free parameters. The procedure is
nevertheless predictive if more than N observables can be identified whose predictions
depend only on these parameters.

Step 4a is required when the low-energy expansion is being used as an efficient means to ac-
curately calculating observables in a well-understood theory. It is the option of choosing instead
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Step 4b, however, which introduces much of the versatility of effective-Lagrangian methods. Step 4b
is useful both when the underlying theory is not known (such as when searching for physics be-
yond the Standard Model) and when the underlying physics is known but complicated (like when
describing the low-energy interactions of pions in quantum chromodynamics).

The effective Lagrangian is in this way seen to be predictive even though it is not renormalizable
in the usual sense. In fact, renormalizable theories are simply the special case of Step 4b where one
stops at order r0, and so are the ones which dominate in the limit that the light and heavy scales are
very widely separated. We see in this way why renormalizable interactions play ubiquitous roles
through physics! These observations have important conceptual implications for the quantum
behaviour of other non-renormalizable theories, such as gravity, to which we return in the next
Section 3.

2.6.1 The choice of variables

The effective Lagrangian of the toy model seems to carry much more information when θ is used
to represent the light particles than it would if I were used. How can physics depend on the fields
which are used to parameterize the theory?

Physical quantities do not depend on what variables are used to describe them, and the low-
energy scattering amplitude is suppressed by the same power of r in the toy model regardless of
whether it is the effective Lagrangian for I or θ which is used at an intermediate stage of the
calculation.

The final result would nevertheless appear quite mysterious if I were used as the low-energy
variable, since it would emerge as a cancellation only at the end of the calculation. With θ the
result is instead manifest at every step. Although the physics does not depend on the variables in
terms of which it is expressed, it nevertheless pays mortal physicists to use those variables which
make manifest the symmetries of the underlying system.

2.6.2 Regularization dependence

The definition of Leff appears to depend on lots of calculational details, like the value of Λ (or, in
dimensional regularization, the matching scale) and the minutae of how the cutoff is implemented.
Why doesn’t Leff depend on all of these details?

Leff generally does depend on all of the regularizational details. But these details all must
cancel in final expressions for physical quantities. Thus, some Λ-dependence enters into scattering
amplitudes through the explicit dependence which is carried by the couplings of Leff (beyond tree
level). But Λ also potentially enters scattering amplitudes because loops over all light degrees of
freedom must be cut off at Λ in the effective theory, by definition. The cancellation of these two
sources of cutoff-dependence is guaranteed by the observation that Λ enters only as a bookmark,
keeping track of the light and heavy degrees of freedom at intermediate steps of the calculation.

This cancellation of Λ in all physical quantities ensures that we are free to make any choice of
cutoff which makes the calculation convenient. After all, although all regularization schemes for
Leff give the same answers, more work is required for some schemes than for others. Again, mere
mortal physicists use an inconvenient scheme at their own peril!

2.6.2.1 Dimensional regularization This freedom to use any convenient scheme is ulti-
mately the reason why dimensional regularization may be used when defining low-energy effective
theories, even though the dimensionally-regularized effective theories involve fields with modes of
arbitrarily high momentum. At first sight the necessity of having modes of arbitrarily large mo-
menta appear in dimensionally-regularized theories would seem to make dimensional regularization
inconsistent with effective field theory. After all, any dimensionally-regularized low-energy theory
would appear necessarily to include states having arbitrarily high energies.
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In practice this is not a problem, so long as the effective interactions are chosen to properly
reproduce the dimensionally-regularized scattering amplitudes of the full theory (order-by-order in
1/M). This is possible ultimately because the difference between the cutoff- and dimensionally-
regularized low-energy theory can itself be parameterized by appropriate local effective couplings
within the low-energy theory. Consequently, any regularization-dependent properties will neces-
sarily drop out of final physical results, once the (renormalized) effective couplings are traded for
physical observables.

In practice this means that one does not construct a dimensionally-regularized effective theory
by explicitly performing a path integral over successively higher-energy momentum modes of all
fields in the underlying theory. Instead one defines effective dimensionally regularized theories for
which heavy fields are completely removed. For instance, suppose it is the low-energy influence
of a heavy particle h having mass M which is of interest. Then the high-energy theory consists
of a dimensionally-regularized collection of light fields `i and h, while the effective theory is a
dimensionally-regularized theory of the light fields `i only. The effective couplings of the low-
energy theory are obtained by performing a matching calculation, whereby the couplings of the
low-energy effective theory are chosen to reproduce scattering amplitudes or Green’s functions of
the underlying theory order-by-order in powers of the inverse heavy scale 1/M . Once the couplings
of the effective theory are determined in this way in terms of those of the underlying fundamental
theory, they may be used to compute any purely low-energy observable.

An important technical point arises if calculations are being done to one-loop accuracy (or
more) using dimensional regularization. For these calculations it is convenient to trade the usual
minimal-subtraction (or modified-minimal-subtraction) renormalization scheme, for a slightly mod-
ified decoupling subtraction scheme [149, 124, 125]. In this scheme couplings are defined using min-
imal (or modified-minimal) subtraction between successive particle threshholds, with the couplings
matched from the underlying theory to the effective theory as each heavy particle is successively
integrated out. This results in a renormalization group evolution of effective couplings which is
almost as simple as for minimal subtraction, but with the advantage that the implications of
heavy particles in running couplings are explicitly decoupled as one passes to energies below the
heavy particle mass. Some textbooks which describe effective Lagrangians are [74, 59]; some re-
views articles which treat low-energy effective field theories (mostly focussing on pion interactions)
are [117, 108, 114, 133, 127, 100, 75].

A great advantage of the dimensionally-regularized effective theory is the absence of the cutoff
scale Λ, which implies that the only dimensionful scales which arise are physical particle masses.
This was implicitly used in the power-counting arguments given earlier, wherein integrals over
loop momenta were replaced by powers of heavy masses on dimensional grounds. This gives a
sufficiently accurate estimate despite the ultraviolet divergences in these integrals, provided the
integrals are dimensionally regularized. For effective theories it is powers of the arbitrary cutoff
scale Λ which would arise in these estimates, and because Λ cancels out of physical quantities, this
just obscures how heavy physical masses appear in the final results.

2.7 The meaning of renormalizability

The previous discussion about the cancellation between the cutoffs on virtual light-particle mo-
menta and the explicit cutoff-dependence of Leff is eerily familiar. It echoes the traditional dis-
cussion of the cancellation of the regularized ultraviolet divergences of loop integrals against the
regularization dependence of the counterterms of the renormalized Lagrangian. There are, however,
the following important differences:

• The cancellations in the effective theory occur even though Λ is not sent to infinity, and even
though Leff contains arbitrarily many terms which are not renormalizable in the traditional
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sense (i.e., terms whose coupling constants have dimensions of inverse powers of mass in
fundamental units where ~ = c = 1).

• Whereas the cancellation of regularization dependence in the traditional renormalization
picture appears ad-hoc and implausible, those in the effective Lagrangian are sweet reason
personified. This is because they simply express the obvious fact that Λ only was introduced
as an intermediate step in a calculation, and so cannot survive uncancelled in the answer.

This resemblance suggests Wilson’s physical reinterpretation of the renormalization procedure.
Rather than considering a model’s classical Lagrangian, such as L of Equation (1), as something
pristine and fundamental, it is better to think of it also as an effective Lagrangian obtained by
integrating out still more microscopic degrees of freedom. The cancellation of the ultraviolet
divergences in this interpretation is simply the usual removal of an intermediate step in a calculation
to whose microscopic part we are not privy.
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3 Low-Energy Quantum Gravity

According to the approach just described, non-renormalizable theories are not fundamentally dif-
ferent from renormalizable ones. They simply differ in their sensitivity to more microscopic scales
which have been integrated out. It is instructive to see what this implies for the non-renormalizable
theories which sometimes are required to successfully describe experiments. This is particularly
true for the most famous such case, Einstein’s theory of gravity. (See [58] for another pedagogical
review of gravity as an effective theory.)

3.1 General relativity as an effective theory

The low-energy degrees of freedom in this case are the metric gµν of spacetime itself. As has been
seen in previous sections, Einstein’s action for this theory should be considered to be just one term
in a sum of all possible interactions which are consistent with the symmetries of the low-energy
theory (which in this case are: general covariance and local Lorentz invariance). Organizing the
resulting action into powers of derivatives of the metric leads to the following effective Lagrangian:

− Leff√
−g

= λ +
M2

p

2
R + aRµν Rµν + b R2 + d RµνλρR

µνλρ + e�R +
c

m2
R3 + . . . . (28)

Here Rµνλρ is the metric’s Riemann tensor, Rµν is its Ricci tensor, and R is the Ricci scalar,
each of which involves precisely two derivatives of the metric. For brevity only one representative
example of the many possible curvature-cubed terms is explicitly written. (We use here Weinberg’s
curvature conventions [147], which differ from those of Misner, Thorne, and Wheeler [122] by an
overall sign.)

The first term in Equation (28) is the cosmological constant, which is dropped in what follows
since the observed size of the universe implies λ is extremely small. There is, of course, no real
theoretical understanding why the cosmological constant should be this small (a comprehensive
review of the cosmological constant problem is given in [152]; for a recent suggestion in the spirit of
effective field theories see [3, 27]). Once the cosmological term is dropped, the leading term in the
derivative expansion is the one linear in R, which is the usual Einstein–Hilbert action of general
relativity. Its coefficient defines Newton’s constant (and so also the Planck mass, M−2

p = 8πG).
The explicit mass scales, m and Mp, are introduced to ensure that the remaining constants a,

b, c, d and e appearing in Equation (28) are dimensionless. Since it appears in the denominator,
the mass scale m can be considered as the smallest microscopic scale to have been integrated out to
obtain Equation (28). For definiteness we might take the electron mass, m = 5× 10−4 GeV, for m
when considering applications at energies below the masses of all elementary particles. (Notice that
contributions like m2R or R3/M2

p could also exist, but these are completely negligible compared
to the terms displayed in Equation (28).)

3.1.1 Redundant interactions

As discussed in the previous section, some of the interactions in the Lagrangian (28) may be
redundant, in the sense that they do not contribute independently to physical observables (like
graviton scattering amplitudes about some fixed geometry, say). To eliminate these we are free to
drop any terms which are either total derivatives or which vanish when evaluated at solutions to
the lower-order equations of motion.

The freedom to drop total derivatives allows us to set the couplings d and e to zero. We can
drop e because

√
−g �R = ∂µ[

√
−g∇µR], and we can drop d because the quantity

X = RµνλρR
µνλρ − 4RµνRµν + R2, (29)
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integrates to give a topological invariant in 4 dimensions. That is, in 4 dimensions χ(M) =
(1/32π2)

∫
M

√
g X d4x gives the Euler number of a compact manifold M – and so X is locally a

total derivative. It is therefore always possible to replace, for example, RµνλρR
µνλρ in the effective

Lagrangian with the linear combination 4RµνRµν −R2, with no consequences for any observables
which are insensitive to the overall topology of spacetime (such as the classical equations, or per-
turbative particle interactions). Any such observable therefore is unchanged under the replacement
(a, b, d) → (a′, b′, d′) = (a− d, b + 4d, 0).

The freedom to perform field redefinitions allows further simplification (just as was found for
the toy model in earlier sections). To see how this works, consider the infinitesimal field redefinition
δgµν = Yµν , under which the leading term in Leff undergoes the variation

M2
p

2
δ

∫
d4x

√
−g R = −

M2
p

2

∫
d4x

√
−g

[
Rµν − 1

2
Rgµν

]
Yµν . (30)

In particular, we may set the constants a and b to zero simply by choosing M2
p Yµν = 2aRµν −

(a+2b)Rgµν . Since the variation of the lower-order terms in the action are always proportional to
their equations of motion, quite generally any term in Leff which vanishes on use of the lower-order
equations of motion can be removed in this way (order by order in 1/m and 1/Mp).

Since the lowest-order equations of motion for pure gravity (without a cosmological constant)
imply Rµν = 0, we see that all of the interactions beyond the Einstein–Hilbert term which are
explicitly written in Equation (28) can be removed in one of these two ways. The first interaction
which can have physical effects (for pure gravity with no cosmological constant) in this low-energy
expansion is therefore proportional to the cube of the Riemann tensor.

This last conclusion changes if matter or a cosmological constant are present, however, since
then the lowest-order field equations become Rµν = Sµν for some nonzero tensor Sµν . Then terms
like R2 or RµνRµν no longer vanish when evaluated at the solutions to the equations of motion,
but are instead equivalent to interactions of the form (Sµ

µ)2, SµνRµν , or SµνSµν . Since some of
our later applications of Leff are to the gravitational potential energy of various localized energy
sources, we shall find that these terms can generate contact interactions amongst these sources.

3.2 Power counting

Since gravitons are weakly coupled, perturbative power-counting may be used to see how the high-
energy scales Mp and m enter into observables like graviton scattering amplitudes about some
fixed macroscopic metric. We now perform this power counting along the lines of previous sections
for the interactions of gravitons near flat space: gµν = ηµν + hµν . For the purposes of this power
counting all we need to know about the curvatures is that they each involve all possible powers of
– but only two derivatives of – the fluctuation field hµν .

A power-counting estimate for the L-loop contribution to the E-point graviton-scattering am-
plitude AE , which involves Vid vertices involving d derivatives and the emission or absorption of i
gravitons, may be found by arguments identical to those used previously for the toy model. The
main difference from the toy-model analysis is the existence for gravity of interactions involving
two derivatives, which all come from the Einstein–Hilbert term in Leff . (Such terms also arise
for Goldstone bosons for symmetry-breaking patterns involving non-Abelian groups and are easily
incorporated into the analysis.) The resulting estimate for AE turns out to be of order

AE(E) ∼ m2M2
p

(
1

Mp

)E (
m

4πMp

)2L (
m2

M2
p

)Z (
E

m

)P

, (31)

where Z =
∑′

id Vid and P = 2 + 2L +
∑′

id(d− 2)Vid. The prime on both of these sums indicates
the omission of the case d = 2 from the sum over d. If we instead group the terms involving powers

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-5

http://www.livingreviews.org/lrr-2004-5


24 Cliff P. Burgess

of L and Vik, Equation (31) takes the equivalent form

AE(E) ∼ E2M2
p

(
1

Mp

)E (
E

4πMp

)2L ∏
i

∏
d>2

[
E2

M2
p

(
E

m

)d−4
]Vid

. (32)

Notice that since d is even, the condition d > 2 in the product implies there are no negative powers
of E in this expression.

Equations (31) and (32) share many of the noteworthy features of Equations (26) and (27).
Again the weakness of the graviton’s coupling follows only from the low-energy approximations,
E � Mp and E � m. When written as in Equation (32), it is clear that even though the ratio
E/m is potentially much larger than E/Mp, it does not actually arise in AE unless contributions
from at least curvature-cubed interactions are included (for which d = 6).

These expressions permit a determination of the dominant low-energy contributions to scat-
tering amplitudes. The minimum suppression comes when L = 0 and P = 2, and so is given by
arbitrary tree graphs constructed purely from the Einstein–Hilbert action. We are led in this way
to what we are in any case inclined to believe: It is classical general relativity which governs the
low-energy dynamics of gravitational waves!

But the next-to-leading contributions are also quite interesting. These arise in one of two ways,
either (i) L = 1 and Vid = 0 for any d 6= 2, or (ii) L = 0,

∑
i Vi4 = 1, Vi2 is arbitrary, and all

other Vid vanish. That is, the next to leading contribution is obtained by computing the one-loop
corrections using only Einstein gravity, or by working to tree level and including precisely one
curvature-squared interaction in addition to any number of interactions from the Einstein–Hilbert
term. Both are suppressed compared to the leading term by a factor of (E/Mp)2, and the one-loop
contribution carries an additional factor of (1/4π)2.

For instance, for 2-body graviton scattering we have E = 4, and so the above arguments imply
the leading behaviour is A4(E) ∼ A2(E/Mp)2 + A4(E/Mp)4 + . . ., where the numbers A2 and A4

have been explicitly calculated. At tree level all of the amplitudes turn out to vanish except for
those which are related by crossing symmetry to the amplitude for which all graviton helicities
have the same sign, and this is given by [52]:

− iAtree
(++,++) = 8πG

(
s3

tu

)
, (33)

where s, t and u are the usual Mandelstam variables, all of which are proportional to the square
of the centre-of-mass energy Ecm. Besides vindicating the power-counting expectation that A ∼
(E/Mp)2 to leading order, this example also shows that the potentially frame-dependent energy E,
which is relevant in the power-counting analysis, is in this case really the invariant centre-of-mass
energy Ecm.

The one-loop correction to this result has also been computed [64], and is infrared divergent.
These infrared divergences cancel in the usual way with tree-level bremsstrahlung diagrams [144],
leading to a finite result [62], which is suppressed as expected relative to the tree contribution by
terms of order (E/4πMp)2, up to logarithmic corrections.

3.2.1 Including matter

The observables of most practical interest for experimental purposes involve the gravitational
interactions of various kinds of matter. It is therefore useful to generalize the previous arguments
to include matter and gravity coupled to one another. In most situations this generalization is
reasonably straightforward, but somewhat paradoxically it is more difficult to treat the interactions
of non-relativistic matter than of relativistic matter. This section describes the reasons for this
difference.
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3.2.1.1 Relativistic matter Consider first relativistic matter coupled to gravity. Rather than
describing the general case, it suffices for the present purposes to consider instead a relativistic
boson (such as a massless scalar or a photon) coupled to gravity but which does not self-interact.
The matter Lagrangian for such a system is then

− Lmat√
−g

=
1
2
gµν∂µφ∂νφ +

1
4
FµνFµν , (34)

and so the new interaction terms all involve at most two matter fields, two derivatives, and any
number of undifferentiated metric fluctuations. This system is simple enough to include directly
into the above analysis provided the graviton-matter vertices are counted together with those from
the Einstein–Hilbert term when counting the vertices having precisely two derivatives with Vi2.

Particular kinds of higher-derivative terms involving the matter fields may also be included
equally trivially, provided the mass scales which appear in these terms appear in the same way as
they did for the graviton. For instance, scalar functions built from arbitrary powers of Aµ/Mp and
its derivatives ∂µ/m can be included, along the lines of

∆Ln = cknm2M2
p

(
Fµν�kFµν

m2+2kM2
p

)n

. (35)

If the dimensionless constant ckn in these expressions is O(1), then the power-counting result for
the dependence of amplitudes on m and Mp is the same as it is for the pure-gravity theory, with
vertices formed from ∆Ln counted amongst those with d = (2 + 2k)n derivatives. If m � Mp it is
more likely that powers of Aµ come suppressed by inverse powers of m rather than Mp, however, in
which case additional Aµ vertices are less suppressed than would be indicated above. The extension
of the earlier power-counting estimate to this more general situation is straightforward.

Similar estimates also apply if a mass mφ for the scalar field is included, provided that this mass
is not larger than the energy flowing through the external lines: mφ . E. This kind of mass does
not change the power-counting result appreciably for observables which are infrared finite (which
may require, as mentioned above summing over an indeterminate number of soft final gravitons).
They do not change the result because infrared-finite quantities are at most logarithmically singular
as mφ → 0 [150], and so their expansion in mφ/E simply adds terms for which factors of E are
replaced by smaller factors of mφ. But the above discussion can change dramatically if mφ � E,
since an important ingredient in the dimensional estimate is the assumption that the largest scale
in the graph is the external energy E. Consequently the power-counting given above only directly
applies to relativistic particles.

3.2.1.2 Non-relativistic matter The situation is more complicated if the matter particles
move non-relativistically, since in this case the particle mass is much larger than the momenta
involved in the external lines, p = |p| � mφ, so E ≈ mφ + p2/(2mφ) + . . .. We expect quantum
corrections to the gravitational interactions of such particles also to be suppressed (such as, for
instance, for the Earth) despite the energies and momenta involved being much larger than Mp.
Indeed, most of the tests of general relativity involve the gravitational interactions and orbits of
very non-relativistic ‘particles’, like planets and stars. How can this be understood?

The case of non-relativistic particles is also of real practical interest for the applications of
effective field theories in other branches of physics. This is so, even though one might think that
an effective theory should contain only particles which are very light. Non-relativistic particles can
nevertheless arise in practice within an effective field theory, even particles having masses which
are large compared to those of the particles which were integrated out to produce the effective field
theory in the first place. Such massive particles can appear consistently in a low-energy theory
provided they are stable (or extremely long-lived), and so cannot decay and release enough energy to
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invalidate the low-energy approximation. Some well-known examples of this include the low-energy
nuclear interactions of nucleons (as described within chiral perturbation theory [153, 154, 101, 110]),
the interactions of heavy fermions like the b and t quark (as described by heavy-quark effective
theory (HQET) [91, 92, 109]), and the interactions of electrons and nuclei in atomic physics (as
described by non-relativistic quantum electrodynamics (NRQED) [34, 112, 104, 105, 128, 111]).

The key to understanding the effective field theory for very massive, stable particles at low
energies lies in the recognition that their anti-particles need not be included since they would have
already been integrated out to obtain the effective field theory of interest. As a result heavy-particle
lines within the Feynman graphs of the effective theory only directly connect external lines, and
never arise as closed loops.

The most direct approach to estimating the size of quantum corrections in this case is to power-
count as before, subject to the restriction that graphs including internal closed loops of heavy
particles are to be excluded. Donoghue and Torma [61] have performed such a power-counting
analysis along these lines, and shows that quantum effects remain suppressed by powers of light-
particle energies (or small momentum transfers) divided by Mp through the first few nontrivial
orders of perturbation theory. Although heavy-particle momenta can be large, p � Mp, they only
arise in physical quantities through the small relativistic parameter p/mφ ∼ v rather than through
p/Mp, extending the suppression of quantum effects obtained earlier to non-relativistic problems.

Unfortunately, if a calculation is performed within a covariant gauge, individual Feynman
graphs can depend on large powers like mφ/Mp, even though these all cancel in physical amplitudes.
For this reason an all-orders inductive proof of the above power-counting remains elusive. As
Donoghue and Torma [61] also make clear, progress towards such an all-orders power-counting
result is likely to be easiest within a physical, non-covariant gauge, since such a gauge allows
powers of small quantities like v to be most easily followed.

3.2.1.3 Non-relativistic effective field theory If experience with electromagnetism is any
guide, effective field theory techniques are also likely to be the most efficient way to systematically
keep track of both the expansion in inverse powers of both heavy masses, 1/Mp and 1/mφ –
particularly for bound orbits. Relative to the theories considered to this point, the effective field
theory of interest has two unusual properties. First, since it involves very slowly-moving particles,
Lorentz invariance is not simply realized on the corresponding heavy-particle fields. Second, since
the effective theory does not contain antiparticles for the heavy particles, the heavy fields which
describe them contain only positive-frequency parts. To illustrate how these features arise, we
briefly sketch how such a non-relativistic effective theory arises once the antiparticles corresponding
to a heavy stable particle are integrated out. We do so using a toy model of a single massive scalar
field, and we work in position space to facilitate the identification of the couplings to gravitational
fields.

Consider, then, a complex massive scalar field (we take a complex field to ensure low-energy
conservation of heavy-particle number) having action

− L√
−g

= gµν∂µφ∗∂µφ + m2
φφ∗φ, (36)

for which the conserved current for heavy-particle number is

Jµ = −igµν(φ∗∂νφ− ∂νφ∗φ). (37)

Our interest is in exhibiting the leading couplings of this field to gravity, organized in inverse
powers of mφ. We imagine therefore a family of observers relative to whom the heavy particles
move non-relativistically, and whose foliation of spacetime allows the metric to be written as

ds2 = −(1 + 2ϕ)dt2 + 2Ni dt dxi + γijdxi dxj , (38)
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where i = 1, 2, 3 labels coordinates along the spatial slices which these observers define.
When treating non-relativistic particles it is convenient to remove the rest mass of the heavy

particle from the energy, since (by assumption) this energy is not available to other particles in
the low-energy theory. For the observers just described this can be done by extracting a time-
dependent phase from the heavy-particle field according to φ(x) = Fe−imφtχ(x). F = (2mφ)−1/2

is chosen for later convenience, to ensure a conventional normalization for the field χ. With this
choice we have ∂tφ = F (∂t − imφ)χ, and the extra mφ-dependence introduced this way has the
effect of making the large-mφ limit of the positive-frequency part of a relativistic action easier to
follow.

With these variables the action for the scalar field becomes

− L√
−g

=
mφ

2
(
gtt + 1

)
χ∗χ +

i

2
gtµ (χ∗∂µχ− ∂µχ∗χ) +

1
2mφ

gµν ∂µχ∗∂νχ, (39)

and the conserved current for heavy-particle number becomes

Jµ = −gµt χ∗χ− i

2mφ
gµν(χ∗∂νχ− ∂νχ∗χ). (40)

Here gtt = −1/D, gti = N i/D, and gij = γij − N iN j/D, with N i = γijNj and D = 1 + 2φ +
γijNiNj .

Notice that for Minkowski space, where gµν = ηµν = diag (−,+,+,+), the first term in L
vanishes, leaving a result which is finite in the mφ → ∞ limit. Furthermore – keeping in mind
that the leading time and space derivatives are of the same order of magnitude (∂t ∼ ∇2/mφ) –
the leading large-mφ part of L is equivalent to the usual non-relativistic Schrödinger Lagrangian
density, Lsch = χ∗

[
i∂t +∇2/(2mφ)

]
χ. In the same limit the density of χ particles also takes the

standard Schrödinger form ρ = J t = χ∗χ +O(1/mφ).
The next step consists of integrating out the anti-particles, which (by assumption) cannot

be produced by the low-energy physics of interest. In principle, this can be done by splitting
the relativistic field χ into its positive- and negative-frequency parts χ(±), and performing the
functional integral over the negative-frequency part χ(−). (To leading order this often simply
corresponds to setting the negative-frequency part to zero.) Once this has been done the fields
describing the heavy particles have the non-relativistic expansion

χ(+)(x) =
∫

d3p apu
(+)
p (x), (41)

with no anti-particle term involving a∗p. It is this step which ensures the absence of virtual heavy-
particle loops in the graphical expansion of amplitudes in the low-energy effective theory.

Writing the heavy-particle action in this way extends the standard parameterized post-Newtonian
(PPN) expansion [69, 67, 68, 147] to the effective quantum theory, and so forms the natural set-
ting for an all-orders power-counting analysis which keeps track of both quantum and relativistic
effects. For instance, for weak gravitational fields having φ ∼ N2 ∼ γij − δij � 1, the leading
gravitational coupling for large mφ may be read off from Equation (39) to be

L0 ≈ −
mφ

2
√
−g

(
gtt + 1

)
χ∗χ ≈ −mφ

(
φ +

N2

2

)
χ∗χ, (42)

which for Ni = 0 reproduces the usual Newtonian coupling of the potential φ to the non-relativistic
mass distribution. For several χ particles prepared in position eigenstates we are led in this way
to considering the gravitational field of a collection of classical point sources.

The real power of the effective theory lies in identifying the subdominant contributions in
powers of 1/mφ, however, and the above discussion shows that different components of the metric
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couple to matter at different orders in this small quantity. Once φ is shifted by the static non-
relativistic Newtonian potential, however, the remaining contributions are seen to couple with a
strength which is suppressed by negative powers of mφ, rather than positive powers. A full power-
counting analysis using such an effective theory, along the lines of the analogous electromagnetic
problems [34, 112, 104, 105, 128, 111], would be very instructive.

3.3 Effective field theory in curved space

All of the explicit calculations of the previous sections are performed for weak gravitational fields,
which are well described as perturbations about flat space. This has the great virtue of being suf-
ficiently simple to make explicit calculations possible, including the widespread use of momentum-
space techniques. Much less is known in detail about effective field theory in more general curved
spaces, although its validity is implicitly assumed by the many extant calculation of quantum
effects in curved space [19], including the famous calculation of Hawking radiation [88, 89] by
black holes. This section provides a brief sketch of some effective-field theory issues which arise in
curved-space applications.

For quantum systems in curved space we are still interested in the gravitational action, Equa-
tion (28), possibly supplemented by a matter action such as that of Equation (36). As before,
quantization is performed by splitting the metric into a classical background ĝµν and a quantum
fluctuation hµν according to gµν = ĝµν + hµν . A similar expansion may be required for the matter
fields φ = φ̂ + δφ, if these acquire vacuum expectation values φ̂.

The main difference from previous sections is that ĝµν is not assumed to be the Minkowski met-
ric. Typically we imagine the spacetime may be foliated by a set of observers, as in Equation (38),

ds2 = −(1 + 2ϕ)dt2 + 2Ni dt dxi + γij dxi dxj . (43)

and we imagine that the slices of constant t are Cauchy surfaces, in the sense that the future
evolution of the fields is uniquely specified by initial data on a constant-t slice. The validity of this
initial-value problem may also require boundary conditions for the fluctuations hµν such as that
they vanish at spatial infinity.

3.3.1 When should effective Lagrangians work?

Many of the general issues which arise in this problem are similar to those which arise outside of
gravitational physics when quantum fields are considered in the presence of background classical
scalar or electromagnetic fields. In particular, there is a qualitative difference between the cases
where the background fields are time-independent or time-dependent. The purpose of this section
is to argue that we expect an effective field theory to work provided that the background fields
vary sufficiently slowly with respect to time, an argument which in its relativistic context is called
the ‘nice slice’ criterion [131].

3.3.1.1 Time-independent backgrounds In flat space, background fields which are time-
translation invariant allow the construction of a conserved energy H, which evolves forward the
fields from one t slice to another. If H is bounded below3, then a stable ground state for the
quantum fields (the ‘vacuum’) typically exists, about which small fluctuations can be explored
perturbatively. Since energy can be defined and is conserved, it can be used as a criterion for
defining an effective theory which distinguishes between states which are ‘low-energy’ or ‘high-
energy’ as measured using H. Once this is possible, a low-energy effective theory may be defined,

3Examples where H is not bounded from below can arise, such as for charged particles in a sufficiently strong
background electric field [134]. In such situations the runaway descent of the system to arbitrarily low energies is
interpreted as being due to continual particle pair production by the background field.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2004-5

http://www.livingreviews.org/lrr-2004-5


Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory 29

and we expect the general uncertainty-principle arguments given earlier to ensure that it is local
in time.

A similar statement holds for background gravitational fields, with a conserved Hamiltonian
following from the existence of a time-like Killing vector field Kµ for the background metric ĝµν

4.
For matter fields H is defined in terms of Kµ and the stress tensor Tµν by the integral

Hmat =
∫

t

dΣµ Kν Tµ
ν . (44)

Here the integral is over any spacelike slice whose measure is dΣµ. Given appropriate boundary
conditions this definition can also be extended to the fluctuations hµν of the gravitational field [7,
8, 9, 10, 14, 16, 15, 11, 12, 13, 1].

If the timelike Killing vector Kµ is hypersurface orthogonal, then the spacetime is called static,
and it is possible to adapt our coordinates so that Kµ∂µ = ∂t and so the metric of Equation (43)
specializes to Ni = 0, with φ and γij independent of t. In this case we call the observers corre-
sponding to these coordinates ‘Killing’ observers. In order for these observers to describe physics
everywhere, it is implicit that the timelike Killing vector Kµ be globally defined throughout the
spacetime of interest.

If H is defined and is bounded from below, its lowest eigenstate defines a stable vacuum and
allows the creation of a Fock space of fluctuations about this vacuum. As was true for non-
gravitational background fields, in such a case we might again expect to be able to define an
effective theory, using H to distinguish ‘low-energy’ from ‘high-energy’ fluctuations about any
given vacuum.

It is often true that Kµ is not unique because there is more than one globally-defined timelike
Killing vector in a given spacetime. For instance, this occurs in flat space where different inertial
observers can be rotated, translated, or boosted relative to one another. In this case the Fock
space of states to which each of the observers is led are typically all unitarily equivalent to one
another, and so each observer has an equivalent description of the physics of the system.

An important complication to this picture arises when the timelike Killing vector field cannot
be globally defined throughout all of the spacetime. In this case horizons exist, which divide the
regions having timelike Killing vectors from those which do not. Often the Killing vector of interest
becomes null at the boundaries of these regions. Examples of this type include the accelerated
‘Rindler’ observers of flat space, as well as the static observers outside of a black hole. In this case
it is impossible to foliate the entire spacetime using static slices which are adapted to the Killing
observer, and the above construction must be reconsidered.

Putting the case of horizons aside for the moment, we expect that a sensible low-energy/high-
energy split should be possible if the background spacetime is everywhere static, and if the con-
served energy H is bounded from below.

3.3.1.2 Time-dependent backgrounds In non-gravitational problems, time-dependence of
the background fields need not completely destroy the utility of a Hamiltonian or of a ground state,
provided that this time dependence is sufficiently weak as to be treated adiabatically. In this case
the lowest eigenstate of H(t) for any given time defines both an approximate ground state and an
energy in terms of which low-energy and high-energy states can be defined (such as by using an
appropriate eigenvalue Λ(t) of H(t)).

Once the system is partitioned in this way into low-energy and high-energy state, one can ask
whether a purely low-energy description of time evolution is possible using only a low-energy, local

4A Killing vector field satisfies the condition ∇̂µK̂ν + ∇̂νK̂µ = 0, which is the coordinate-invariant expression
of the existence of a time-translation invariance of the background metric. The carets indicate that the derivatives
are defined, and the indices are lowered by the background metric ĝµν .
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effective Lagrangian. The main danger which arises with time-dependent backgrounds is that the
time evolution of the system need not keep low-energy states at low energies, or high-energy states
at high energies. There are several ways in which this might happen:

• The time dependence of the background can be rapid, for instance having Fourier components
which are larger than the dividing line Λ(t) between low-energy and high-energy states. If
so, the background evolution is not sufficiently adiabatic to prevent the direct production of
‘heavy’ particles, and an effective field theory need not exist. The criterion for this not to
happen would be that the energies of any produced particles be smaller than the dividing
eigenvalue Λ(t), which typically requires that Λ(t) be much smaller than the background
time dependence, for instance if Λ � Λ̇/Λ.

• Even for slowly-varying backgrounds there can be other dangers, such as the danger of level-
crossing. For instance the dividing eigenvalue Λ(t) may slowly evolve to smaller values and
so eventually invalidate an expansion in inverse powers of Λ(t). In this case states which are
prepared in the low-energy regime may evolve out of it, leading to a breakdown in the low-
energy approximation. For instance, this might happen if Λ(t) were chosen to be the mass of
an initially heavy particle, which is integrated out to obtain the effective theory. If evolution
of the background fields allows this mass to evolve to become too low, then eventually it
becomes a bad approximation to have integrated it out.

• A related potential problem can arise if states whose energy is initially larger than Λ(t) enter
the low-energy theory by evolving into states having energy lower than Λ(t)5. This usually is
only a problem for the effective-theory formulation if the states which enter in this way are
not in their ground state when they do so, since then new physical excitations would arise at
low energies. Conversely, they are not a problem for the effective field theory description so
long as they enter in their ground states, as can usually be ensured if the background time
evolution is adiabatic.

What emerges from this is that an effective field theory can make sense despite the presence
of time-dependent backgrounds, provided one can focus on the evolution of low-energy states
(E < Λ(t)) without worrying about losing probability into high-energy states (E > Λ(t)). This is
usually ensured if the background time evolution is sufficiently adiabatic.

A similar story should also hold for background spacetimes which are not globally static, but
for which a globally-defined timelike hypersurface-orthogonal vector field V µ exists. For such a
spacetime the observers for whom V µ is tangent to world-lines can define a foliation of spacetime,
as in Equation (43), but with the various metric components not being t-independent. In this case
the quantity defined by Equation (44) need not be conserved, H = H(t), for these observers. A
low-energy effective theory should nonetheless be possible, provided H(t) is bounded from below
and is sufficiently slowly varying (in the senses described above). If such a foliation of spacetime
exists, following [131] we call it a ‘nice slice’.

3.3.2 General power counting

Given an effective field theory, the next question is to analyze systematically how small energy
ratios arise within perturbation theory. Since the key power-counting arguments of the previous
sections were given in momentum space, a natural question is to ask how much of the previous
discussion need apply to quantum fluctuations about more general curved spaces. In particular,

5For example, this could happen for a charged particle in a decreasing magnetic field if the effective theory is set
up so that the dividing energy Λ(t) is not time dependent. Then Landau levels continuously enter the low-energy
theory as the magnetic field strength wanes.
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does the argument that shows how large quantum effects are at arbitrary-loop order apply more
generally to quantum field theory in curved space?

An estimate of higher-loop contributions performed in position space is required in order to
properly apply the previous arguments to more general settings. Such a calculation is possible
because the crucial part of the earlier estimate relied on an estimate for the high-energy dependence
of a generic Feynman graph. This estimate was possible on dimensional grounds given the high-
energy behaviour of the relevant vertices and propagators. The analogous computation in position
space is also possible, where it instead relies on the operator product expansion [157, 41]. In position
space one’s interest is in how effective amplitudes behave in the short-distance regime, rather than
the limit of high energy. But the short-distance limit of propagators and vertices are equally
well-known, and resemble the short-distance limit which is obtained on flat space. Consequently
general statements can be made about the contributions to the low-energy effective theory.

Physically, the equivalence of the short-distance position-space and high-energy momentum-
space estimates is expected because the high-energy contributions arise due to the propagation of
modes having very small wavelength λ. Provided this wavelength is very small compared with the
local radius of curvature rc particle propagation should behave just as if it had taken place in flat
space. One expects the most singular behaviour to be just as for flat space, with curvature effects
appearing in subdominant corrections as powers of λ/rc.

Unfortunately, although the result is not in serious doubt, such a general position-space esti-
mates for gravitational physics on curved space has not yet been done explicitly at arbitrary orders
of perturbation theory. Partial results are known, however, including general calculations of the
leading one-loop ultraviolet divergences in curved space [76, 36, 37, 116].

3.3.3 Horizons and large redshifts

Among the most interesting applications of effective field theory ideas to curved space is the study
of quantum effects near black holes and in the early universe. In particular, for massive black holes
(M � Mp) one expects semi-classical arguments to be valid since the curvature at the horizon is
small and the interesting phenomena (like Hawking radiation) rely only on the existence of the
horizon rather than on any properties of the spacetime near the internal curvature singularity [142].
Although the power-counting near the horizon has not been done in the same detail as it has
been for the asymptotic regions, semi-classical effective-field-theory arguments at the horizon are
expected to be valid. Similar statements are also expected to be true for calculations of particle
production in inflationary universes.

An objection has been raised to the validity of effective field theory arguments in both the
black hole [140, 94, 95] and inflationary [96, 115, 23] contexts. For both of these cases the potential
difficulty arises if one compares the energy of the modes as measured by different observers situated
throughout the spacetime. For instance, a mode which emerges far from a black hole at late times
with an energy (as seen by static and freely-falling observers) close to the Hawking temperature
starts off having extremely high energies as seen by freely-falling observers very close to, but
outside of, the black hole’s event horizon just as it forms. The energy measured at infinity is
much smaller because the state experiences an extremely large redshift as it climbs out of the
black hole’s gravitational well. The corresponding situation in inflation is the phenomenon in
which modes get enormously redshifted (all the way from microscopic to cosmological scales) as
the universe expands.

It has been argued that these effects prevent a consistent low-energy effective theory from being
built in these situations, because very high-energy states are continuously turning up at later times
at low energies. If so, this would seem to imply that a reliable calculation of phenomena like
Hawking radiation (or inflationary fluctuations of the CMB) necessarily require an understanding
of very high energy physics. Since we do not know what this very high energy physics is, this
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is another way of saying that these predictions are theoretically unreliable, since uncontrolled
theoretical errors potentially contribute with the same size as the predicted effect.

The remainder of this section argues that although the concerns raised are legitimate, they
are special cases of the general conditions mentioned earlier which govern the applicability of
effective field theory ideas to time-dependent backgrounds also in non-gravitational settings. As
such one expects to find robustness against adiabatic physics at high energies, and sensitivity to
non-adiabatic effects. (This is borne out by the explicit calculations to date.) Given a concrete
theory of what the high-energy physics is, one can then ask into which category it falls, and so
better quantify the theoretical error.

3.3.3.1 Black holes For black holes the potential high-energy difficulty can be traced to the
fact that the energy of an freely-falling object as seen by static observers becomes arbitrarily large
as one approaches the event horizon. This is why the escaping modes have such high energies
as seen by static observers near the horizon. This raises two separate issues for effective field
theories, which are worth separating: the issue of the relevance of static observers measuring very
large energies for freely-falling objects, and the issue of high-energy states descending into the
low-energy theory as time progresses. Each of these is now discussed in turn.

The fact that freely-falling observers measure different energies for outgoing particles, depending
on their distance from the horizon, underlines that there is a certain amount of frame dependence in
any effective-theory description, even in flat space. This is so because energy is used as the criterion
for deciding which states fall into the effective theory and which do not, yet any nominally low-
energy particle has a large energy as seen by a sufficiently boosted observer. In practice this is not a
problem, because the validity of the effective theory description only requires the existence of low-
energy observers, not that all observers be at low energy. What is important is that the physically
relevant energies for the process of interest – for instance, the centre-of-mass energies in a scattering
event – are small in order for this process to be describable using a low-energy theory. Once this
is true, invariant quantities like cross sections take a simple low-energy form when expressed in
terms of physical kinematic variables, regardless of the energies which the particles involved have
as measured by observers who are highly boosted compared to the centre-of-mass frame.

Flat-space experience therefore suggests that there need not be a problem associated with
escaping modes having large energies as seen by freely-falling observers. This only indicates that
the use of some observers near the horizon may be problematic. So long as the physics involved
does not rely crucially on these observers, it may in any case allow an effective-theory description.
This is essentially the point of view put forward in [94, 95] and [131]6, where it is argued that the
robustness of the Hawking radiation to high-energy physics is most simply understood if one is
careful to foliate the spacetime using slices which are chosen to be ‘nice slices’ (in the sense described
above), which cut through the horizon in such a way as to encounter only small curvatures and
adiabatic time variation. Since such slices exist, a low-energy theory may be set up in terms of
the slowly-varying H(t) which these slices define. A great many calculations using nice slices have
been done, including for example [44, 47, 126, 118, 119].

Of course, calculations need not explicitly use the nice slices in order to profit from their
existence. In the same way that dimensional regularization can be more useful in practice for
calculations in effective field theories, despite its inclusion of arbitrarily high energy modes, the
sensitivity of Hawking radiation to high energies can be investigated using a convenient covariant
regularization. This is because if nice slices exist, covariant calculations must reproduce the in-
sensitivity to high energies which they guarantee. This is borne out by explicit calculations of the
sensitivity of the Hawking radiation to high energies [87] using a simple covariant regularization.

6These authors have slightly different spins on the more philosophical question of whether trans-Planckian physics
is likely to be found to be non-adiabatic.
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The most important manner in which high-energy states can influence the Hawking radiation
has been identified from non-covariant studies, such as those which model the high-energy physics
as non-Lorentz invariant dispersion relations for otherwise free particles [141, 24, 42]. (See [96] for a
review, with references, of these calculations.) These identify the second pertinent issue mentioned
above: the descent of higher-energy states into the low-energy theory. In these calculations high-
energy modes cross into the low-energy theory because of their redshift as they climb out of the
gravitational potential well of the black hole. The usual expression for the Hawking radiation
follows provided that these modes enter the low-energy theory near the black hole horizon in their
adiabatic ground state (a result which can also be seen in covariant approaches, where it can be
shown that the Hawking radiation depends only on the form of the singularity of the propagator
near the light cone [72]). If these modes do not start off in their ground state, then they potentially
cause observable changes to the Hawking radiation.

The condition that high-energy modes enter the low-energy theory in their ground state is
reminiscent of the same condition which was encountered in previous sections as a general pre-
condition for the validity of a low-energy effective description when there are time-dependent
backgrounds (including, for example, the descent of Landau levels in a decreasing magnetic field).
In non-gravitational contexts it is automatically satisfied if the background evolution is adiabatic,
and this can also be expected to be true in the gravitational case. Of course, this expectation
cannot be checked explicitly unless the theory for the relevant high-energy physics is specified,
but it is borne out by all of the existing calculations. To the extent that high-energy modes do
not arise in their adiabatic vacua, their effects might be observable in the Hawking radiation as
well as in possibly many other observables which would otherwise be expected to be insensitive to
high-energy physics.

Clearly this is good news, since it tells us that we can believe that generic quantum effects do
not ruin the classical calculations using general relativity, which tell us that black holes exist. Nor
do they ruin the semiclassical calculations which lead to effects like the Hawking radiation [88, 89]
in the vicinity of black holes – provided that the black hole mass is much larger than Mp (which
we shall see is required if quantum effects are to remains small at the event horizon). On the
other hand, it means that we cannot predict the final stages of black hole evaporation, since these
inevitably lead to small black hole masses, where the semiclassical approximation breaks down.

3.3.3.2 Inflation Many of the issues concerning the validity of effective field theories which
arise for the Hawking radiation also arise within inflationary cosmology, and have generated con-
siderable discussion due to the recent advent of precise measurements of CMB temperature fluctua-
tions. By analogy with the black hole case, it has been proposed [96, 115, 23] that very-high-energy
physics may not decouple from inflationary predictions due to the exponential expansion of space.
If so, there might be detectable imprints on the observed temperature fluctuations in the cosmic
microwave background [97]. Conversely, if high-energy effects do contaminate inflationary predic-
tions for CMB fluctuations at an observable level, then inflationary predictions themselves must be
recognized as containing an uncontrollable theoretical uncertainty. If so, their successful descrip-
tion of the observations cannot be deemed to be credible evidence of the existence of an earlier
inflationary phase. There is clearly much at stake.

It is beyond the scope of the this article to summarize all of the intricacies associated with
quantum field theory in de Sitter space, so we focus only on the parallels with the black hole
situation. The bottom line for cosmology is similar to what was found for the Hawking radiation:

• Observable effects can be obtained from physics associated with energies E much higher than
the inflationary expansion rate H, if the states associated with the heavy physics are chosen
not to be in their adiabatic vacuum7. Potentially observable effects have been obtained by

7In the inflationary context we take ‘adiabatic vacuum’ to mean the Bunch–Davies vacuum [26]. See, however,
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explicit calculations which incorporate non-adiabatic physics of various types. For many of
these the high-energy physics is modelled as a free particle having a non-Lorentz-invariant
dispersion relation (for a review with references, see [22]). However large Lorentz-violating
interactions need not be required since similar effects are also obtained using more con-
ventional inflationary field theories, for which background scalar fields are allowed to roll
non-adiabatically [31].

• If the states associated with high-energy physics are prepared in their adiabatic vacua then an
effective field theory description applies. In this case most kinds of heavy physics decouple,
and the vast majority of effects it can produce for the microwave background can be argued
to be smaller than O(H2/M2) [99, 98]. Even in this case, however, larger contributions can
be obtained using ordinary inflationary field-theory examples, where low-energy effects can
instead be suppressed by powers of m/M rather than H/M , where m is a light scale which
need not be as small as H [30].

Again the final picture which emerges is encouraging. The criteria for validity of effective
field theories appear to be the same for gravity as they are in non-gravitational situations. In
particular, for a very broad class of high-energy physics effective field theory arguments apply, and
so theoretical predictions for the fluctuations in the CMB are robust in the sense that they are
insensitive to most of the details of this physics. But some kinds of high-energy effects can produce
observable phenomena, and these should be searched for.

[45, 46, 17, 65, 66, 77, 78, 39, 40] for arguments against the use of non-standard vacua in de Sitter space.
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4 Explicit Quantum Calculations

Although the ideas presented in here have been around for more than twenty years [148], explicit
calculations based on them have only recently been made. Two of these are summarized in this
section.

4.1 Non-relativistic point masses in three spatial dimensions

The first example to be considered consists of quantum corrections to the potential energy V (r)
of gravitational interaction for two large, slowly-moving point masses separated by a distance r.
Working to leading order in source velocities v, we expect the leading behavior for large source
masses to be the Newtonian gravitational interaction of two classical, static point sources of energy:

ρ(r) =
∑

i

Mi δ3(r− ri). (45)

Our interest is in the quantum and relativistic corrections to this Newtonian limit, as described
by the gravitational action, Equation (28), plus the appropriate source action (like, for instance,
Equation (39)). For point sources which are separated by a large distance r we expect these cor-
rections to be weak, and so they should be calculable in perturbation theory about flat space. The
strength of the gravitational interaction at large separation is controlled by two small dimensionless
quantities, which suggest themselves on dimensional grounds. Temporarily re-instating factors of
~ and c, these small parameters are G~/r2c3 and GMi/rc2. Both tend to zero for large r, and as
we shall see, the first controls the size of quantum corrections and the second controls the size of
relativistic corrections8.

4.1.1 Definition of the potential

Because there is some freedom of choice in the definition of an interaction potential in a relativistic
field theory, we first pause to consider some of the definitions which have been considered. Although
more sophisticated possibilities are possible [123, 43], for systems near the flat-space limit a natural
definition of the interaction potential between slowly-moving point masses can be made in terms
of their scattering amplitudes.

Consider, then, two particles which scatter non-relativistically, with each undergoing a mo-
mentum transfer, ∆p1 = −∆p2 ≡ q, in the center-of-mass frame. The most direct definition of
the interaction potential V (r) of these two particles is to define its matrix elements within single-
particle states to reproduce the full field-theoretical amplitude for this scattering. For instance, if
the field-theoretic scattering matrix takes the form 〈f |T |i〉 = (2π)4δ4(pf − pi)A(q), the potential
V would be defined by

〈f |T |i〉 = 2π δ(Ef − Ei)〈f |Ṽ (q)|i〉. (46)

The position-space potential is then given by V (r) = N(2π)−3
∫

d3q Ṽ (q). The overall normaliza-
tion N depends on the conventions used for the normalization of the initial and final states, and
is chosen to ensure the proper form for the Newtonian interaction.

Several other definitions for the interaction potential have also been considered by various
workers, some of which we now briefly list.

8The point of the non-relativistic power-counting of the previous section is to show that the third, large, r-
independent dimensionless quantity GMiMj/~c does not appear in the interaction energy.
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Figure 2: The 1-particle-reducible Feynman graphs relevant to the definition of the interaction
potential. The blobs represent self-energy and vertex corrections.

4.1.1.1 One-particle-reducible amplitude An alternative definition, followed in [57, 56, 5],
is to define the interaction potential in terms of the one-particle-reducible part of the amplitude
A1PR – see Figure 2 – as is commonly done for quantum electrodynamics and quantum chromody-
namics. The logic of this choice is that because the graviton propagator varies as 1/q2, for small q2

graviton exchange dominates very-long-distance interactions. It has the disadvantage that the one-
particle-reducible graphs are not observable in themselves, and so need not form a gauge-invariant
subset. Nevertheless, the results obtained from this definition can be interpreted [60, 21] as giv-
ing the leading quantum corrections to the Schwarzschild, Kerr–Newman, and Reisner–Nordström
metrics.

4.1.1.2 Vacuum polarization Some early workers defined the interaction potential in terms
of the purely vacuum polarization subset of the 1-particle-reducible graphs [63, 33, 80]. The
motivation for such a choice is that these are the only graphs which would arise for a purely
classical source, which macroscopic objects like planets or stars were expected to be. It is important
to recognize that the power-counting arguments given earlier necessarily require the inclusion of
vertex corrections at the same order in small quantities as the vacuum polarization graphs. The
necessity for so doing shows that there is no limit in which a source for the gravitational field can
be considered to be precisely classical. This non-classicality arises because the gravitational field
itself carries energy, and its quantum fluctuations do not decouple in the large-mass limit due to
the growth which the gravitational coupling experiences in this limit.

4.1.2 Calculation of the interaction potential

We now describe the results of recent explicit calculations of the gravitational potential just defined.
A number of these calculations have now been performed [82, 93, 83, 86, 102, 103, 90], and it is
the results of [57, 56, 21, 20] which are summarized here.

For any of these potentials, scattering at large distances (r →∞) – i.e., large impact parameters
– corresponds to small momentum transfers, q2 → 0. Because corrections to the Newtonian limit
involve the interchange of massless gravitons, in general scattering amplitudes are not analytic in
this limit. In particular, in the present instance the small-q2 limit to the scattering amplitude
turns out to behaves as

A(q) =
k2

q2
+

k1√
q2

+ k0 log
(
q2

)
+Aan(q2), (47)

where Aan = A0 + A2q2 + . . . is an analytic function of q2 near q2 = 0.
In position space the first three terms of Equation (47) correspond to terms which fall off with

r like k2/r, k1/r2, and k0/r3, respectively. By contrast, the powers of q2 in Aan only contribute
terms to V (r) which are local, inasmuch as they are proportional to δ3(r) or its derivatives. Since
our interest is only in the long-distance interaction, the analytic contributions of Aan may be
completely ignored in what follows.
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The power-counting analysis described in earlier sections suggest that the leading corrections
to the Newtonian result come either from (i) relativistic contributions coming from tree-level
calculations within general relativity, (ii) one-loop corrections to the classical potential, again
using only general relativity, or (iii) from tree-level contributions containing precisely one vertex
from the curvature-squared terms of the effective theory, Equation (28). The interaction potential
therefore has the form

V (r) = VGR,cl(Mp; r) + VGR,q(Mp; r) + Vcs(a, b, Mp; r), (48)

respectively corresponding to the contributions of classical general relativity, the one-loop correc-
tions within general relativity, and the classical curvature-squared contributions. The dependence
of this latter term on the quantities Mp, a, and b are written explicitly to emphasize which con-
tributions depend on which parameters. We now describe the result which is obtained for each of
these three types of contribution.

4.1.2.1 Curvature-squared terms The simplest contribution to dispose of is that due to
the curvature-squared terms9. Because these terms are polynomials in momenta, they contribute
only to the analytic part Aan of the scattering amplitudes, and so give only local contributions
to the interaction potential which involve δ3(r) or its derivatives. Their precise form is computed
in [57, 56], who find

Vcs(r) = GM1M2B δ3(r), (49)

with B given in terms of the constants a and b of Equation (28) by B = 128π2G(a + b). Since
they contribute only to Aan, we see that these contributions are necessarily irrelevant to the large-
distance interaction potential.

It is instructive to think of this δ-function contribution due to curvature-squared terms in
another way. To this end, consider the toy model of a massless scalar field coupled to a classical
δ-function source, whose Lagrangian is

− L =
1
2
(∂φ)2 +

κ

2
(�φ)2. (50)

The higher-derivative term proportional to κ in this model is the analogue of the curvature-
squared gravitational interactions. The propagator for this theory satisfies the equation (� −
κ �2)Gκ(x, y) = δ4(x− y), which becomes (to linear order in κ)

Gκ(x, y) ≈ G0(x, y) + κ�G0(x, y) = G0(x, y) + κ δ4(x− y), (51)

where G0(x, y) is the usual propagator when κ = 0. We see the expected result that the leading
contribution to V (r) is purely local in position space (as might be expected for the low-energy
implications of very-high-energy/very-short-range physics).

This way of thinking of things is useful because it illustrates an important conceptual issue
for effective field theories. Normally one considers higher-derivative theories to be anathema since
higher-derivative field equations generically have unstable runaway solutions, and the above cal-
culation shows why these do not pose problems for the effective field theory. To see why this is so,
it is useful to pause to review how the runaway solutions arise.

At the classical level, runaway modes are possible because of the additional initial data which
higher-derivative equations require. The reason for their origin in the quantum theory is also easily

9Notice that the curvature-squared terms can no longer be eliminated by performing field redefinitions once
classical sources are included. Instead they can only be converted into the direct source-source interactions in which
we are interested.
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seen using the toy theory defined by Equation (50), for which at face value the momentum-space
scalar propagator would be

− iG(p) ∝ 1
p2 + κ p4

=
1
p2
− 1

p2 + κ−1
. (52)

This shows how the higher-derivative term introduces a new pole into the propagator at p2 = −κ−1,
but with a residue whose sign is unphysical (corresponding to a ghost mode with negative kinetic
energy).

The reason these do not pose a problem for effective field theories is that all of the higher-
derivative terms are required to be treated perturbatively, since these interactions are defined by
reproducing the results of the underlying physics order-by-order in powers of inverse heavy masses
1/m. In the effective theory of Equation (50) the propagator (52) must be read as

− iG(p) ∝ 1
p2

(
1− κ p2 + . . .

)
, (53)

since the Lagrangian itself is only accurate to leading order in κ. The ghost pole does not arise
perturbatively in κ p2, since its location is up at high energies, p2 = −κ−1. Simon [137] makes
this general argument explicit for the specific case of higher-derivative gravity linearized about flat
space.

4.1.2.2 Classical general relativity The leading contributions for large r due to the rela-
tivistic corrections of general relativity have the large-r form (with factors of c restored)

VGR,cl(r) = −GM1M2

r

[
1 + λ

G(M1 + M2)
rc2

+ . . .

]
, (54)

where G = 1/(8πM2
p) is Newton’s constant, M1 and M2 are the masses whose potential energy is

of interest, and which are separated by the distance r.
The square brackets,

[
1 + . . .

]
, in this expression represent the relativistic corrections to the

Newtonian potential which already arise within classical general relativity, and λ is a known con-
stant whose value depends on the precise coordinate conditions used in the calculation. For ex-
ample, using the potential defined by the 1-particle-reducible scattering amplitude gives λ1PR =
−1 [57, 56, 21], corresponding to the classical result for the metric in harmonic gauge, for which
the Schwarzschild metric takes the form

g00 = −1−GM/r

1 + GM/r
= −1 + 2

(
GM

r

)
− 2

(
GM

r

)2

+ . . . . (55)

Alternatively, using the potential defined by the full scattering amplitude Atot instead gives λtot =
+3 [20]. It is natural that different values for λ are obtained when different definitions for V are
used, since these different definitions contribute differently to physical observables (on which all
calculations must agree).

There is another ambiguity in the definition of the potential [90], which is related to the
freedom to redefine the coordinate r, according to r → r′ = r(1 + aGM/r + . . .). Of course,
such a coordinate change should drop out of physical observables, but how this happens in this
case involves a subtlety. The main point is that the low-energy effective Lagrangian for the non-
relativistic particles contains two terms of the same size at subleading order in the relativistic
expansion, having the schematic form

∆L = λ(GM2/r)(GM/r) + λ′(GM/r)(Mv2), (56)
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where M and v are the mass and velocity of the non-relativistic particle of interest. The main point
is that the constants λ and λ′ are redundant interactions in the sense defined earlier, inasmuch as
all physical observables only depend on a single combination of these two constants. Observables
only depend on one combination because the other combination can be removed by performing the
coordinate transformation r → r(1 + aGM/r + . . .) as above. From this we see that the coefficient
λ of GM/r2 obtained for V (r) can also differ from one another, provided that the coefficient λ′

also differs in such a way as to give the same results for physical observables.

4.1.2.3 One-loop general relativity The final term in V (r) arises from the one-loop con-
tribution as computed within general relativity, which is extracted by calculating the one-loop
corrections to the scattering amplitude Aq. Although these corrections typically diverge in the
ultraviolet, on general grounds such divergences contribute only polynomials in momenta, and so
can contribute only to the non-relativistic amplitude’s analytic part Aan(q2). Indeed, this is re-
quired for the one-loop divergences to be absorbed by renormalizing the effective couplings a and
b of the higher-curvature terms of the gravitational action (2810.

It follows from this observation that to the extent that we focus on the long-distance inter-
actions in V (r), to the order we are working these must be ultraviolet finite since they receive
no contribution from the amplitude’s analytic part. This means that the leading quantum impli-
cations for V (r) are unambiguous predictions which are not complicated by the renormalization
procedure.

Explicit calculation shows that the non-analytic part of the quantum corrections to scattering
are proportional to log q2, and so the leading one-loop quantum contribution to the interaction
potential is (again re-instating powers of ~ and c)

VGR,q(r) = −GM1M2

r

[
1 + ξ

G~
r2c3

+ . . .

]
, (57)

where ξ is a calculable number. If the potential is computed using only the one-particle-reducible
scattering amplitude, the result for pure gravity is [21]:

ξ1PR = − 167
30π

. (58)

Notice that this corrects an error in the earlier result for the same quantity, given in [57, 56]. If,
instead, the full amplitude Atot is used to define the interaction potential, Bjerrum–Bohr et al. [20]
find

ξtot = +
41
10π

. (59)

It is argued in [20] that these one-loop results for ξ do not suffer from ambiguity due to the freedom
to perform redefinitions of the form r → r(1 + aG2/r2 + . . .).

4.1.3 Implications

It is remarkable that the quantum corrections to the interaction potential can be so cleanly iden-
tified. In this section we summarize a few general inferences which follow from their size and
dependence on physical parameters like mass and separation.

Conceptually, the main point is that the quantum effects are calculable, and in principle can
be distinguished from purely classical corrections. For instance, the quantum contribution (57)
can be distinguished from the classical relativistic corrections (54) because the quantum and the

10The necessity for renormalizing a and b in addition to Newton’s constant at one loop reflects the fact that
general relativity is not renormalizable. Still higher-curvature terms would be required to absorb the divergences at
two loops and beyond.
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relativistic terms depend differently on G and the masses M1 and M2. In particular, relativistic
corrections are controlled by the dimensionless quantity GMtot/rc2, which is a measure of typical
orbital velocities v2/c2. The leading quantum corrections, on the other hand, are M -independent
and are controlled by the ratio `2p/r2, where `p = (G~/c3)1/2 ∼ 10−35 m is the Planck length.

Although the one-particle-reducible contributions need not be separately gauge-independent,
Bjerrum–Borh [21] and Donoghue [60] argue that they may be usefully interpreted as defining long-
distance quantum corrections to the metric external to various types of point sources. Besides
obtaining corrections to the Schwarzschild metric in this way, they do the same for the Kerr–
Newman and Reissner–Nordström metrics by incorporating spin and electric charge into the non-
relativistic quantum source. Because the quantum corrections they find are source-independent,
these authors suggest they be interpreted in terms of a running Newton’s constant, according to

G(r) = G

[
1− 167

30π

(
G

r2

)
+ . . .

]
. (60)

Numerically, the quantum corrections are so miniscule as to be unobservable within the solar
system for the forseeable future. Table 1 evaluates their size using for definiteness a solar mass
M�, and with r chosen equal to the solar radius R� ∼ 109 m, or the solar Schwarzschild radius
rs = 2GM�/c2 ∼ 103 m. Clearly the quantum-gravitational correction is numerically extremely
small when evaluated for garden-variety gravitational fields in the solar system, and would remain
so right down to the event horizon even if the sun were a black hole. At face value it is only for
separations comparable to the Planck length that quantum gravity effects become important. To
the extent that these estimates carry over to quantum effects right down to the event horizon on
curved black hole geometries (more about this below) this makes quantum corrections irrelevant
for physics outside of the event horizon, unless the black hole mass is as small as the Planck mass,
Mhole ∼ Mp ∼ 10−5 g.

GM�

rc2

G~
r2c3

r = R� 10−6 10−88

r = 2GM�/c2 0.5 10−76

Table 1: The generic size of relativistic and quantum corrections to the Sun’s gravitational field.

Of course, the undetectability of these quantum corrections does not make them unimportant.
Rather, the above calculations underline the following three conclusions:

• One need not throw up one’s hands when contemplating quantum gravity effects, because
quantum corrections in gravity are often unambiguous and calculable.

• Although the small size of the above quantum corrections in the solar system mean that
they are unlikely to be measured, they also show that the great experimental success of
classical general relativity in the solar system should also be regarded as a triumph of quantum
gravity! Classical calculations are not a poor substitute for some poorly-understood quantum
theory, they are rather an extremely good approximation for which quantum corrections are
exceedingly small.

• Despite the above two points, the mysteries of quantum gravity remain real and profound.
But the above calculations show that these are high-energy (or short-distance) mysteries,
and so point to cosmological singularities or primordial black holes as being the places to
look for quantum gravitational effects.
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4.2 Co-dimension two and cosmic strings

A second explicit calculation of quantum corrections within general relativity has been done for
the gravitational field of a cosmic string, which for our purposes is a line distribution of mass
characterized by a mass-per-unit-length ρ. This system naturally suggests itself as a theoretical
laboratory for computing quantum effects because its classical gravitational field is extremely
simple.

The classical field due to a line distribution of mass is simple for the following reason. Because
of the symmetry of the mass distribution, the calculation of the gravitational field it produces is
effectively a 2 + 1 dimensional problem. If the exterior to the mass distribution is empty, we seek
there a solution to the vacuum Einstein equations Rµν = 0. But it is a theorem that in 2 + 1
dimensions any geometry which is Ricci flat must also be Riemann flat: Rµνλρ = 0! Superficially
this appears to lead to the paradoxical conclusion that long, straight cosmic strings should not
gravitate.

This conclusion is not quite correct, however. Although it is true that the vanishing of the
Riemann tensor implies no tidal forces for test particles which pass by on the same side of the string,
test particles are influenced to approach one another if they pass by on opposite sides of the string.
The reason for this may be seen by more closely examining the spacetime’s geometry near the
position of the cosmic string. The boundary conditions at this point require that spacetime there
to resemble the tip of a cone, inasmuch as an infinitely thin cosmic string introduces a δ-function
singularity into the curvature of spacetime. This implies that the flat geometry outside of the string
behaves globally like a cone, corresponding to the removal of a defect angle, ∆θ = 8πGρ radians,
from the external geometry. This conical geometry for the external spacetime is what causes the
focussing of trajectories of pairs of particles which pass by on either side of the string [49, 48].

The above considerations show that the gravitational interaction of two cosmic strings furnishes
an ideal theoretical laboratory for studying quantum gravity effects near flat space. Since the
classical gravitational force of one string on the other vanishes classically, its leading contribution
arises at the quantum level. Consider, for instance, the interaction energy per-unit-length uint

of two straight parallel strings separated by a distance a. This receives no contribution from the
Einstein–Hilbert term of the effective action, for the reasons just described. Furthermore, just as for
point gravitational sources, higher-curvature interactions only generate contact interactions, and so
are also irrelevant for computing the strings’ interactions at long range. The leading contribution
therefore arises at the quantum level, and must be ultraviolet finite.

These expectations are borne out by explicit one-loop calculations, which have been com-
puted [155] for the case of two strings having constant mass-per-unit-lengths ρ1 and ρ2. The result
obtained is (again temporarily restoring the explicit powers of ~ and c)

uint(a) =
(

24~
5πc3

)
G2ρ1ρ2

a2
, (61)

whose sign corresponds to a repulsive interaction.
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5 Conclusions

The goal of this review has been to summarize the modern picture of quantum gravity, within
which the perturbative non-renormalizability of general relativity is recognized as being a particular
instance of a more general phenomena: the widespread application of non-renormalizable quantum
field theories throughout many branches of physics. Regarding quantum gravity in this way shows
how quantitative predictions can be made: One must simply apply the rules of effective field
theories, which are known to give an accurate description of experiments in low-energy nuclear,
particle, atomic, and condensed matter physics.

Thinking of general relativity as an effective theory in this way is not a new development, and
underlies most approaches to quantum gravity either explicitly or implicitly. Neither is it new
to calculate explicitly the behaviour of quantum fields in curved space (sometimes including the
graviton). What is new (over the last few years) is proceeding beyond the qualitative statement
that general relativity is an effective theory to obtain the quantitative next-to-leading predictions
within a controlled semiclassical approximation. Although much of the mechanics of such calcu-
lations leans on experience obtained when calculating with quantum fields in curved space, the
crucial new difference is the quantitative power-counting arguments which identify precisely which
quantum effects contribute to any given order in small quantities.

What emerges from this summary is a snapshot of a work which is very much still in progress.
The following loom large among the missing results:

• Although a general statement of the power-counting result for very light, relativistic particles
near flat space has been known for some time [61, 28], the central general power-counting
results are not yet demonstrated to all orders for the most interesting case for practical
calculations: the gravitational interactions of very massive, non-relativistic sources which
are weakly interacting gravitationally (i.e., in spacetimes which are perturbatively close to
Minkowski space).

• Although the theoretical tools exist, in the form of the operator product expansion, similarly
general power-counting arguments are not yet given for quantum fluctuations about more
general curved spaces.

• Some explicit calculations which are cast within the power-counting framework have been
done, but many more can surely be done.

There can be little doubt that quantum effects are extremely small in the classical systems for
which gravitational measurements are possible (like the solar system), but this need not undermine
the motivation for their computation. The point of such calculations is not their relevance for
practical experiments (we wish!). Rather, their point is conceptual. It is only through the careful
calculation of quantum effects that the theory of their size can be solidly established. In particular,
any precise comparison between observations and the predictions of classical gravity is ultimately
incomplete unless the quantitative size of the quantum corrections is explicitly established, as a
systematic, all-orders power-counting argument would do.

Furthermore, we can always hope to get lucky, even if only theoretically. A clean understanding
of how the size of quantum corrections depends on the variables (mass, size, separation, etc.) in a
given system, one might hope to find larger-than-generic quantum phenomena in special systems.
Even if these lie beyond the reach of present-day experimenters, they may furnish instructive the-
oretical laboratories within which differing approaches to quantum gravity might be more starkly
compared.

In the last analysis, I hope the reader has become convinced of the utility of effective field
theory techniques, and that the effective field theory point of view lifts the experimental triumphs
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of classical general relativity to precision tests of the leading-order implications of the quantum
theory of gravity.
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