661 research outputs found
Supersymmetric AdS_4 black holes and attractors
Using the general recipe given in arXiv:0804.0009, where all timelike
supersymmetric solutions of N=2, D=4 gauged supergravity coupled to abelian
vector multiplets were classified, we construct the first examples of genuine
supersymmetric black holes in AdS_4 with nonconstant scalar fields. This is
done for various choices of the prepotential, amongst others for the STU model.
These solutions permit to study the BPS attractor flow in AdS. We also
determine the most general supersymmetric static near-horizon geometry and
obtain the attractor equations in gauged supergravity. As a general feature we
find the presence of flat directions in the black hole potential, i.e.,
generically the values of the moduli on the horizon are not completely
specified by the charges. For one of the considered prepotentials, the
resulting moduli space is determined explicitely. Still, in all cases, we find
that the black hole entropy depends only on the charges, in agreement with the
attractor mechanism.Comment: 25 pages, uses JHEP3.cl
Nernst branes from special geometry
We construct new black brane solutions in gauged
supergravity with a general cubic prepotential, which have entropy density
as and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with at the
horizon and at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
Section 3. No changes to conclusions. References adde
Speed has an effect on multiple-object tracking independently of the number of close encounters between targets and distractors
Multiple-object tracking (MOT) studies have shown that tracking ability declines as object speed increases. However, this might be attributed solely to the increased number of times that target and distractor objects usually pass close to each other (“close encounters”) when speed is increased, resulting in more target–distractor confusions. The present study investigates whether speed itself affects MOT ability by using displays in which the number of close encounters is held constant across speeds. Observers viewed several pairs of disks, and each pair rotated about the pair’s midpoint and, also, about the center of the display at varying speeds. Results showed that even with the number of close encounters held constant across speeds, increased speed impairs tracking performance, and the effect of speed is greater when the number of targets to be tracked is large. Moreover, neither the effect of number of distractors nor the effect of target–distractor distance was dependent on speed, when speed was isolated from the typical concomitant increase in close encounters. These results imply that increased speed does not impair tracking solely by increasing close encounters. Rather, they support the view that speed affects MOT capacity by requiring more attentional resources to track at higher speeds
Nernst branes in gauged supergravity
We study static black brane solutions in the context of N = 2 U(1) gauged
supergravity in four dimensions. Using the formalism of first-order flow
equations, we construct novel extremal black brane solutions including examples
of Nernst branes, i.e. extremal black brane solutions with vanishing entropy
density. We also discuss a class of non-extremal generalizations which is
captured by the first-order formalism.Comment: 44 pages, 3 figures, v2: added appendix B and references, minor
typographic changes, v3: added some clarifying remarks, version published in
JHE
Possible effect of medically administered antibiotics on the mutans streptococci: implications for reduction in decay
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74585/1/j.1399-302X.1989.tb00103.x.pd
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel.In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime: we compute the two-point
correlation functions for the linearized Einstein tensor and for the metric
perturbations. Second, we discuss structure formation from the stochastic
gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in
the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
Stochastic Gravity: Theory and Applications
Whereas semiclassical gravity is based on the semiclassical Einstein equation
with sources given by the expectation value of the stress-energy tensor of
quantum fields, stochastic semiclassical gravity is based on the
Einstein-Langevin equation, which has in addition sources due to the noise
kernel. In the first part, we describe the fundamentals of this new theory via
two approaches: the axiomatic and the functional. In the second part, we
describe three applications of stochastic gravity theory. First, we consider
metric perturbations in a Minkowski spacetime, compute the two-point
correlation functions of these perturbations and prove that Minkowski spacetime
is a stable solution of semiclassical gravity. Second, we discuss structure
formation from the stochastic gravity viewpoint. Third, we discuss the
backreaction of Hawking radiation in the gravitational background of a black
hole and describe the metric fluctuations near the event horizon of an
evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews
in Relativity gr-qc/0307032 ; it includes new sections on the Validity of
Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric
Fluctuations of an Evaporating Black Hol
A meta-analytic review of stand-alone interventions to improve body image
Objective
Numerous stand-alone interventions to improve body image have been developed. The
present review used meta-analysis to estimate the effectiveness of such interventions, and
to identify the specific change techniques that lead to improvement in body image.
Methods
The inclusion criteria were that (a) the intervention was stand-alone (i.e., solely focused on
improving body image), (b) a control group was used, (c) participants were randomly
assigned to conditions, and (d) at least one pretest and one posttest measure of body
image was taken. Effect sizes were meta-analysed and moderator analyses were conducted.
A taxonomy of 48 change techniques used in interventions targeted at body image
was developed; all interventions were coded using this taxonomy.
Results
The literature search identified 62 tests of interventions (N = 3,846). Interventions produced
a small-to-medium improvement in body image (d+ = 0.38), a small-to-medium reduction in
beauty ideal internalisation (d+ = -0.37), and a large reduction in social comparison tendencies
(d+ = -0.72). However, the effect size for body image was inflated by bias both within
and across studies, and was reliable but of small magnitude once corrections for bias were
applied. Effect sizes for the other outcomes were no longer reliable once corrections for
bias were applied. Several features of the sample, intervention, and methodology moderated
intervention effects. Twelve change techniques were associated with improvements in
body image, and three techniques were contra-indicated.
Conclusions
The findings show that interventions engender only small improvements in body image, and
underline the need for large-scale, high-quality trials in this area. The review identifies effective
techniques that could be deployed in future interventions
Hierarchical colour image segmentation by leveraging RGB channels independently
In this paper, we introduce a hierarchical colour image segmentation based on cuboid partitioning using simple statistical features of the pixel intensities in the RGB channels. Estimating the difference between any two colours is a challenging task. As most of the colour models are not perceptually uniform, investigation of an alternative strategy is highly demanding. To address this issue, for our proposed technique, we present a new concept for colour distance measure based on the inconsistency of pixel intensities of an image which is more compliant to human perception. Constructing a reliable set of superpixels from an image is fundamental for further merging. As cuboid partitioning is a superior candidate to produce superpixels, we use the agglomerative merging to yield the final segmentation results exploiting the outcome of our proposed cuboid partitioning. The proposed cuboid segmentation based algorithm significantly outperforms not only the quadtree-based segmentation but also existing state-of-the-art segmentation algorithms in terms of quality of segmentation for the benchmark datasets used in image segmentation. © 2019, Springer Nature Switzerland AG
Holographic Vitrification
We establish the existence of stable and metastable stationary black hole
bound states at finite temperature and chemical potentials in global and planar
four-dimensional asymptotically anti-de Sitter space. We determine a number of
features of their holographic duals and argue they represent structural
glasses. We map out their thermodynamic landscape in the probe approximation,
and show their relaxation dynamics exhibits logarithmic aging, with aging rates
determined by the distribution of barriers.Comment: 100 pages, 25 figure
- …