448 research outputs found

    Zinc intake, status and indices of cognitive function in adults and children: a systematic review and meta-analysis

    Get PDF
    In developing countries, deficiencies of micronutrients are thought to have a major impact on child development; however, a consensus on the specific relationship between dietary zinc intake and cognitive function remains elusive. The aim of this systematic review was to examine the relationship between zinc intake, status and indices of cognitive function in children and adults. A systematic literature search was conducted using EMBASE, MEDLINE and Cochrane Library databases from inception to March 2014. Included studies were those that supplied zinc as supplements or measured dietary zinc intake. A meta-analysis of the extracted data was performed where sufficient data were available. Of all of the potentially relevant papers, 18 studies met the inclusion criteria, 12 of which were randomised controlled trials (RCTs; 11 in children and 1 in adults) and 6 were observational studies (2 in children and 4 in adults). Nine of the 18 studies reported a positive association between zinc intake or status with one or more measure of cognitive function. Meta-analysis of data from the adult’s studies was not possible because of limited number of studies. A meta-analysis of data from the six RCTs conducted in children revealed that there was no significant overall effect of zinc intake on any indices of cognitive function: intelligence, standard mean difference of <0.001 (95% confidence interval (CI) –0.12, 0.13) P=0.95; executive function, standard mean difference of 0.08 (95% CI, –0.06, 022) P=0.26; and motor skills standard mean difference of 0.11 (95% CI –0.17, 0.39) P=0.43. Heterogeneity in the study designs was a major limitation, hence only a small number (n=6) of studies could be included in the meta-analyses. Meta-analysis failed to show a significant effect of zinc supplementation on cognitive functioning in children though, taken as a whole, there were some small indicators of improvement on aspects of executive function and motor development following supplementation but high-quality RCTs are necessary to investigate this further

    Gene Expression Patterns in Larval Schistosoma mansoni Associated with Infection of the Mammalian Host

    Get PDF
    The schistosome cercaria develops from undifferentiated germ balls within the daughter sporocyst located in the hepatopancreas of its snail intermediate host. This is where the proteins it uses to infect humans are synthesised. After a brief free life in fresh water, if the cercaria locates a host, it infects by direct penetration through the skin. It then transforms into the schistosomulum stage, adapted for life in human tissues. We have designed a large scale array comprising probes representing all known schistosome genes and used it in hybridisation experiments to establish which genes are turned on or off in the parasite during these stages in its life cycle. Genes encoding proteins involved in cell division were prominent in the germ ball along with those for proteases and potential immunomodulators, deployed during skin penetration. The non-feeding cercaria was the least active at synthesising proteins. Conversion to the schistosomulum was accompanied by transcription of genes involved in body remodeling, including production of a new outer surface, and gut activation long before ingestion of red blood cells begins. Our data help us to understand better the proteins deployed to achieve infection, and subsequent adaptations necessary for establishment of the parasite in the human host

    Akt1 Is Essential for Postnatal Mammary Gland Development, Function, and the Expression of Btn1a1

    Get PDF
    Akt1, a serine-threonine protein kinase member of the PKB/Akt gene family, plays critical roles in the regulation of multiple cellular processes, and has previously been implicated in lactation and breast cancer development. In this study, we utilized Akt1+/+ and Akt1−/− C57/Bl6 female mice to assess the role that Akt1 plays in normal mammary gland postnatal development and function. We examined postnatal morphology at multiple time points, and analyzed gene and protein expression changes that persist into adulthood. Akt1 deficiency resulted in several mammary gland developmental defects, including ductal outgrowth and defective terminal end bud formation. Adult Akt1−/− mammary gland composition remained altered, exhibiting fewer alveolar buds coupled with increased epithelial cell apoptosis. Microarray analysis revealed that Akt1 deficiency altered expression of genes involved in numerous biological processes in the mammary gland, including organismal development, cell death, and tissue morphology. Of particular importance, a significant decrease in expression of Btn1a1, a gene involved in milk lipid secretion, was observed in Akt1−/− mammary glands. Additionally, pseudopregnant Akt1−/− females failed to induce Btn1a1 expression in response to hormonal stimulation compared to their wild-type counterparts. Retroviral-mediated shRNA knockdown of Akt1 and Btn1a1 in MCF-7 human breast epithelial further illustrated the importance of Akt1 in mammary epithelial cell proliferation, as well as in the regulation of Btn1a1 and subsequent expression of ß-casein, a gene that encodes for milk protein. Overall these findings provide mechanistic insight into the role of Akt1 in mammary morphogenesis and function

    Rapid evolution of microbe-mediated protection against pathogens in a worm host.

    Get PDF
    Microbes can defend their host against virulent infections, but direct evidence for the adaptive origin of microbe-mediated protection is lacking. Using experimental evolution of a novel, tripartite interaction, we demonstrate that mildly pathogenic bacteria (Enterococcus faecalis) living in worms (Caenorhabditis elegans) rapidly evolved to defend their animal hosts against infection by a more virulent pathogen (Staphylococcus aureus), crossing the parasitism-mutualism continuum. Host protection evolved in all six, independently selected populations in response to within-host bacterial interactions and without direct selection for host health. Microbe-mediated protection was also effective against a broad spectrum of pathogenic S. aureus isolates. Genomic analysis implied that the mechanistic basis for E. faecalis-mediated protection was through increased production of antimicrobial superoxide, which was confirmed by biochemical assays. Our results indicate that microbes living within a host may make the evolutionary transition to mutualism in response to pathogen attack, and that microbiome evolution warrants consideration as a driver of infection outcome

    Reduced Myelin Basic Protein and Actin-Related Gene Expression in Visual Cortex in Schizophrenia

    Get PDF
    Most brain gene expression studies of schizophrenia have been conducted in the frontal cortex or hippocampus. The extent to which alterations occur in other cortical regions is not well established. We investigated primary visual cortex (Brodmann area 17) from the Stanley Neuropathology Consortium collection of tissue from 60 subjects with schizophrenia, bipolar disorder, major depression, or controls. We first carried out a preliminary array screen of pooled RNA, and then used RT-PCR to quantify five mRNAs which the array identified as differentially expressed in schizophrenia (myelin basic protein [MBP], myelin-oligodendrocyte glycoprotein [MOG], β-actin [ACTB], thymosin β-10 [TB10], and superior cervical ganglion-10 [SCG10]). Reduced mRNA levels were confirmed by RT-PCR for MBP, ACTB and TB10. The MBP reduction was limited to transcripts containing exon 2. ACTB and TB10 mRNAs were also decreased in bipolar disorder. None of the transcripts were altered in subjects with major depression. Reduced MBP mRNA in schizophrenia replicates findings in other brain regions and is consistent with oligodendrocyte involvement in the disorder. The decreases in expression of ACTB, and the actin-binding protein gene TB10, suggest changes in cytoskeletal organisation. The findings confirm that the primary visual cortex shows molecular alterations in schizophrenia and extend the evidence for a widespread, rather than focal, cortical pathophysiology

    Seasonality of MRSA Infections

    Get PDF
    Using MRSA isolates submitted to our hospital microbiology laboratory January 2001–March 2010 and the number of our emergency department (ED) visits, quarterly community-associated (CA) and hospital-associated (HA) MRSA infections were modeled using Poisson regressions. For pediatric patients, approximately 1.85x (95% CI 1.45x–2.36x, adj. p<0.0001) as many CA-MRSA infections per ED visit occurred in the second two quarters as occurred in the first two quarters. For adult patients, 1.14x (95% CI 1.01x–1.29x, adj.p = 0.03) as many infections per ED visit occurred in the second two quarters as in the first two quarters. Approximately 2.94x (95% CI 1.39x–6.21x, adj.p = 0.015) as many HA-MRSA infections per hospital admission occurred in the second two quarters as occurred in the first two quarters for pediatric patients. No seasonal variation was observed among adult HA-MRSA infections per hospital admission. We demonstrated seasonality of MRSA infections and provide a summary table of similar observations in other studies

    Promoter- and cell-specific epigenetic regulation of CD44, Cyclin D2, GLIPR1 and PTEN by Methyl-CpG binding proteins and histone modifications

    Get PDF
    <p>Abstract</p> <p><it>Background</it></p> <p>The aim of the current study was to analyze the involvement of methyl-CpG binding proteins (MBDs) and histone modifications on the regulation of CD44, Cyclin D2, GLIPR1 and PTEN in different cellular contexts such as the prostate cancer cells DU145 and LNCaP, and the breast cancer cells MCF-7. Since global chromatin changes have been shown to occur in tumours and regions of tumour-associated genes are affected by epigenetic modifications, these may constitute important regulatory mechanisms for the pathogenesis of malignant transformation.</p> <p><it>Methods</it></p> <p>In DU145, LNCaP and MCF-7 cells mRNA expression levels of CD44, Cyclin D2, GLIPR1 and PTEN were determined by quantitative RT-PCR at the basal status as well as after treatment with demethylating agent 5-aza-2'-deoxycytidine and/or histone deacetylase inhibitor Trichostatin A. Furthermore, genomic DNA was bisulfite-converted and sequenced. Chromatin immunoprecipitation was performed with the stimulated and unstimulated cells using antibodies for MBD1, MBD2 and MeCP2 as well as 17 different histone antibodies.</p> <p><it>Results</it></p> <p>Comparison of the different promoters showed that MeCP2 and MBD2a repressed promoter-specifically Cyclin D2 in all cell lines, whereas in MCF-7 cells MeCP2 repressed cell-specifically all methylated promoters. Chromatin immunoprecipitation showed that all methylated promoters associated with at least one MBD. Treatment of the cells by the demethylating agent 5-aza-2'-deoxycytidine (5-aza-CdR) caused dissociation of the MBDs from the promoters. Only MBD1v1 bound and repressed methylation-independently all promoters. Real-time amplification of DNA immunoprecipitated by 17 different antibodies showed a preferential enrichment for methylated lysine of histone H3 (H3K4me1, H3K4me2 and H3K4me3) at the particular promoters. Notably, the silent promoters were associated with unmodified histones which were acetylated following treatment by 5-aza-CdR.</p> <p><it>Conclusions</it></p> <p>This study is one of the first to reveal the histone code and MBD profile at the promoters of CD44, Cyclin D2, GLIPR1 and PTEN in different tumour cells and associated changes after stimulation with methylation inhibitor 5-aza-CdR.</p

    The Treatment In Morning versus Evening (TIME) study:Analysis of recruitment, follow-up and retention rates post-recruitment

    Get PDF
    Abstract Background The use of information technology (IT) is now the preferred method of capturing and storing clinical research data. The Treatment In Morning versus Evening (TIME) study predominantly uses electronic data capture and IT to compare morning dosing of hypertensive medication against evening dosing. Registration, consent, participant demographics and follow-up data are all captured via the study website. The aim of this article is to assess the success of the TIME methodology compared with similar studies. Methods To assess the TIME study, published literature on similar clinical trials was reviewed and compared against TIME recruitment, follow-up and email interaction data. Results The TIME website registered 31,695 individuals, 21,116 of whom were randomised. Recruitment cost per randomised participant varied by strategy: £17.40 by GP practice, £3.08 by UK Biobank and £58.82 for GoShare. Twelve-month follow-up retention rates were 96%. A total of 1089 participants have withdrawn from their assigned time of dosing, 2% of whom have declined follow-up by record linkage or further contact. When the TIME data are compared with similar study data, study recruitment is very successful. However, TIME suffers difficulties with participant follow-up and withdrawal rates similar to those of conventional studies. Conclusions The TIME study has been successful in recruitment. Follow-up, retention rates and withdrawal rates are all acceptable, but ongoing work is required to ensure participants remain engaged with the study. Various recruitment strategies are necessary, and all viable options should be encouraged to maintain participant engagement throughout the life of studies using IT

    Synergistic binding of transcription factors to cell-specific enhancers programs motor neuron identity

    Get PDF
    Efficient transcriptional programming promises to open new frontiers in regenerative medicine. However, mechanisms by which programming factors transform cell fate are unknown, preventing more rational selection of factors to generate desirable cell types. Three transcription factors, Ngn2, Isl1 and Lhx3, were sufficient to program rapidly and efficiently spinal motor neuron identity when expressed in differentiating mouse embryonic stem cells. Replacement of Lhx3 by Phox2a led to specification of cranial, rather than spinal, motor neurons. Chromatin immunoprecipitation–sequencing analysis of Isl1, Lhx3 and Phox2a binding sites revealed that the two cell fates were programmed by the recruitment of Isl1-Lhx3 and Isl1-Phox2a complexes to distinct genomic locations characterized by a unique grammar of homeodomain binding motifs. Our findings suggest that synergistic interactions among transcription factors determine the specificity of their recruitment to cell type–specific binding sites and illustrate how a single transcription factor can be repurposed to program different cell types.Project ALS FoundationNational Institutes of Health (U.S.) (Grant P01 NS055923
    • …
    corecore