61 research outputs found

    Reinforcement learning of normative monitoring intensities

    Get PDF
    Choosing actions within norm-regulated environments involves balancing achieving one’s goals and coping with any penalties for non-compliant behaviour. This choice becomes more complicated in environments where there is uncertainty. In this paper, we address the question of choosing actions in environments where there is uncertainty regarding both the outcomes of agent actions and the intensity of monitoring for norm violations. Our technique assumes no prior knowledge of probabilities over action outcomes or the likelihood of norm violations being detected by employing reinforcement learning to discover both the dynamics of the environment and the effectiveness of the enforcer. Results indicate agents become aware of greater rewards for violations when enforcement is lax, which gradually become less attractive as the enforcement is increased

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Metal-organic framework glasses with permanent accessible porosity.

    Get PDF
    To date, only several microporous, and even fewer nanoporous, glasses have been produced, always via post synthesis acid treatment of phase separated dense materials, e.g. Vycor glass. In contrast, high internal surface areas are readily achieved in crystalline materials, such as metal-organic frameworks (MOFs). It has recently been discovered that a new family of melt quenched glasses can be produced from MOFs, though they have thus far lacked the accessible and intrinsic porosity of their crystalline precursors. Here, we report the first glasses that are permanently and reversibly porous toward incoming gases, without post-synthetic treatment. We characterize the structure of these glasses using a range of experimental techniques, and demonstrate pores in the range of 4 - 8 Å. The discovery of MOF glasses with permanent accessible porosity reveals a new category of porous glass materials that are elevated beyond conventional inorganic and organic porous glasses by their diversity and tunability

    The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternatively activated macrophages (AAMϕ) play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs) plays any role in AAMϕ induction when young <it>Fasciola hepatica </it>penetrates the liver capsule and migrates through the liver tissue is still unclear.</p> <p>Results</p> <p>The data show that the lack of myeloid differentiation factor 88 (MyD88) has no effect on the AAMϕ derived from the bone marrow (BMMϕ) <it>in vitro </it>and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα), and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in <it>F. hepatica</it>-infected mice in the absence of MyD88 <it>in vitro </it>and in the pleural cavity lavage <it>in vivo</it>. In addition, MyD88-deficiency has no effect on the arginase production of the <it>F. hepatica </it>elicited macrophages (Fe Mϕs), production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post <it>F. hepatica </it>infection.</p> <p>Conclusions</p> <p>The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post <it>F. hepatica </it>infection.</p

    Genome-Wide Transcriptomic Analysis of Intestinal Tissue to Assess the Impact of Nutrition and a Secondary Nematode Challenge in Lactating Rats

    Get PDF
    Gastrointestinal nematode infection is a major challenge to the health and welfare of mammals. Although mammals eventually acquire immunity to nematodes, this breaks down around parturition, which renders periparturient mammals susceptible to re-infection and an infection source for their offspring. Nutrient supplementation reduces the extent of periparturient parasitism, but the underlying mechanisms remain unclear. Here, we use a genome wide approach to assess the effects of protein supplementation on gene expression in the small intestine of periparturient rats following nematode re-infection.The use of a rat whole genome expression microarray (Affymetrix Gene 1.0ST) showed significant differential regulation of 91 genes in the small intestine of lactating rats, re-infected with Nippostrongylus brasiliensis compared to controls; affected functions included immune cell trafficking, cell-mediated responses and antigen presentation. Genes with a previously described role in immune response to nematodes, such as mast cell proteases, and intelectin, and others newly associated with nematode expulsion, such as anterior gradient homolog 2 were identified. Protein supplementation resulted in significant differential regulation of 64 genes; affected functions included protein synthesis, cellular function and maintenance. It increased cell metabolism, evident from the high number of non-coding RNA and the increased synthesis of ribosomal proteins. It regulated immune responses, through T-cell activation and proliferation. The up-regulation of transcription factor forkhead box P1 in unsupplemented, parasitised hosts may be indicative of a delayed immune response in these animals.This study provides the first evidence for nutritional regulation of genes related to immunity to nematodes at the site of parasitism, during expulsion. Additionally it reveals genes induced following secondary parasite challenge in lactating mammals, not previously associated with parasite expulsion. This work is a first step towards defining disease predisposition, identifying markers for nutritional imbalance and developing sustainable measures for parasite control in domestic mammals

    Wingless Signalling Alters the Levels, Subcellular Distribution and Dynamics of Armadillo and E-Cadherin in Third Instar Larval Wing Imaginal Discs

    Get PDF
    Background: Armadillo, the Drosophila orthologue of vertebrate beta-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the "degradation complex'' is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets. Methodology/Principal Findings: Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the "transcriptional'' and "adhesive'' pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. Arm(S10) displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, Delta NArm(1-155) caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-Delta NArm(1-155) produced comparable nuclear accumulation of Armadillo and signalling to Arm(S10). These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin. Conclusions/Significance: Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of Armadillo in regulating the subcellular distribution of E-CadherinPublisher PDFPeer reviewe

    Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes

    Get PDF
    Background: In the central nervous system, glial cells provide metabolic and trophic support to neurons and respond to protracted stress and insults by up-regulating inflammatory processes. Reactive astrocytes and microglia are associated with the pathophysiology of neuronal injury, neurodegenerative diseases and major depression, in both animal models and human brains. Several studies have reported clear anti-inflammatory effects of anti-depressant treatment on astrocytes, especially in models of neurological disorders. Trazodone (TDZ) is a triazolopyridine derivative that is structurally unrelated to other major classes of antidepressants. Although the molecular mechanisms of TDZ in neurons have been investigated, it is unclear whether astrocytes are also a TDZ target. Methods: The effects of TDZ on human astrocytes were investigated in physiological conditions and following inflammatory insult with lipopolysaccharide (LPS) and tumour necrosis factor-aα (TNF-aα). Astrocytes were assessed for their responses to pro-inflammatory mediators and cytokines, and the receptors and signalling pathways involved in TDZ-mediated effects were evaluated. Results: TDZ had no effect on cell proliferation, but it decreased pro-inflammatory mediator release and modulated trophic and transcription factor mRNA expression. Following TDZ treatment, the AKT pathway was activated, whereas extracellular signal-regulated kinase and c-Jun NH2-terminal kinase were inhibited. Most importantly, a 72-h TDZ pre-treatment before inflammatory insult completely reversed the anti-proliferative effects induced by LPS-TNF-aα. The expression or the activity of inflammatory mediators, including interleukin-6, c-Jun NH2-terminal kinase and nuclear factor ΚB, were also reduced. Furthermore, TDZ affected astrocyte metabolic support to neurons by counteracting the inflammation-mediated lactate decrease. Finally, TDZ protected neuronal-like cells against neurotoxicity mediated by activated astrocytes. These effects mainly involved an activation of 5-HT1A and an antagonism at 5-HT2A/C serotonin receptors. Fluoxetine, used in parallel, showed similar final effects nevertheless it activates different receptors/intracellular pathways. Conclusions: Altogether, our results demonstrated that TDZ directly acts on astrocytes by regulating intracellular signalling pathways and increasing specific astrocyte-derived neurotrophic factor expression and lactate release. TDZ may contribute to neuronal support by normalizing trophic and metabolic support during neuroinflammation, which is associated with neurological diseases, including major depression

    Porcine Y-chromosome variation is consistent with the occurrence of paternal gene flow from non-Asian to Asian populations

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de Catalunya.Pigs (Sus scrofa) originated in Southeast Asia and expanded to Europe and North Africa approximately 1 MYA. Analyses of porcine Y-chromosome variation have shown the existence of two main haplogroups that are highly divergent, a result that is consistent with previous mitochondrial and autosomal data showing that the Asian and non-Asian pig populations remained geographically isolated until recently. Paradoxically, one of these Y-chromosome haplogroups is extensively shared by pigs and wild boars from Asia and Europe, an observation that is difficult to reconcile with a scenario of prolonged geographic isolation. To shed light on this issue, we genotyped 33 Y-linked SNPs and one indel in a worldwide sample of pigs and wild boars and sequenced a total of 9903 nucleotide sites from seven loci distributed along the Y-chromosome. Notably, the nucleotide diversity per site at the Y-linked loci (0.0015 in Asian pigs) displayed the same order of magnitude as that described for autosomal loci (~0.0023), a finding compatible with a process of sustained and intense isolation. We performed an approximate Bayesian computation analysis focused on the paternal diversity of wild boars and local pig breeds in which we compared three demographic models: two isolation models (I models) differing in the time of isolation and a model of isolation with recent unidirectional migration (IM model). Our results suggest that the most likely explanation for the extensive sharing of one Y-chromosome haplogroup between non-Asian and Asian populations is a recent and unidirectional (non-Asian > Asian) paternal migration event
    corecore