200 research outputs found

    Heparanase and autoimmune diabetes

    No full text
    Heparanase (Hpse) is the only known mammalian endo-β-d-glucuronidase that degrades the glycosaminoglycan heparan sulfate (HS), found attached to the core proteins of heparan sulfate proteoglycans (HSPGs). Hpse plays a homeostatic role in regulating the turnover of cell-associated HS and also degrades extracellular HS in basement membranes (BMs) and the extracellular matrix (ECM), where HSPGs function as a barrier to cell migration. Secreted Hpse is harnessed by leukocytes to facilitate their migration from the blood to sites of inflammation. In the non-obese diabetic (NOD) model of autoimmune Type 1 diabetes (T1D), Hpse is also used by insulitis leukocytes to solubilize the islet BM to enable intra-islet entry of leukocytes and to degrade intracellular HS, an essential component for the survival of insulin-producing islet beta cells. Treatment of pre-diabetic adult NOD mice with the Hpse inhibitor PI-88 significantly reduced the incidence of T1D by ~50% and preserved islet HS. Hpse therefore acts as a novel immune effector mechanism in T1D. Our studies have identified T1D as a Hpse-dependent disease and Hpse inhibitors as novel therapeutics for preventing T1D progression and possibly the development of T1D vascular complications.This work was supported by a National Health and Medical Research Council of Australia (NHMRC)/Juvenile Diabetes Research Foundation (JDRF) Special Program Grant in Type 1 Diabetes (#418138), a NHMRC Project Grant (#1043284), and a research grant from the Roche Organ Transplantation Research Foundation (ROTRF)/JDRF (#477554991)

    Loss of intra-islet heparan sulfate is a highly sensitive marker of type 1 diabetes progression in humans

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease in which insulin-producing beta cells in pancreatic islets are progressively destroyed. Clinical trials of immunotherapies in recently diagnosed T1D patients have only transiently and partially impacted the disease course, suggesting that other approaches are required. Our previous studies have demonstratedthat heparan sulfate (HS), a glycosaminoglycan conventionally expressed in extracellular matrix, is present at high levels inside normal mouse beta cells. Intracellular HS was shownto be critical for beta cell survival and protection from oxidative damage. T1D development in Non-Obese Diabetic (NOD) mice correlated with loss of islet HS and was prevented by inhibiting HS degradation by the endoglycosidase, heparanase. In this study we investigated the distribution of HS and heparan sulfate proteoglycan (HSPG) core proteins in normal human islets, a role for HS in human beta cell viability and the clinical relevance of intraislet HS and HSPG levels, compared to insulin, in human T1D. In normal human islets, HS (identified by 10E4 mAb) co-localized with insulin but not glucagon and correlated with the HSPG core proteins for collagen type XVIII (Col18) and syndecan-1 (Sdc1). Insulin-positive islets of T1D pancreases showed significant loss of HS, Col18 and Sdc1 and heparanase was strongly expressed by islet-infiltrating leukocytes. Human beta cells cultured with HS mimetics showed significantly improved survival and protection against hydrogen peroxideinduced death, suggesting that loss of HS could contribute to beta cell death in T1D. We conclude that HS depletion in beta cells, possibly due to heparanase produced by insulitis leukocytes, may function as an important mechanism in the pathogenesis of human T1D. Our findings raise the possibility that intervention therapy with dual activity HS replacers/ heparanase inhibitors could help to protect the residual beta cell mass in patients recently diagnosed with T1D.: This work was supported by a National Health and Medical Research Council of Australia (NHMRC; https://www.nhmrc.gov.au/)/Juvenile Diabetes Research Foundation (JDRF) Special Program Grant in Type 1 Diabetes (#418138), The Canberra Hospital Private Practice Fund (http:// www.health.act.gov.au/research-publications/research/ppf-major-grants), JDRF nPOD Research Grant (#25-2010-716; http://www.jdrf.org), JDRF Research Grant (#47-2012-746) and NHMRC Project Grant (#1043284

    Pancreas and islet cell transplantation

    Get PDF
    Currently, for the patient with type 1 diabetes, a definitive treatment without resorting to the use of exogenous insulin can be achieved only with pancreas or islet cell transplantation. These means of restoring β-cell mass can completely maintain essentially normal long-term glucose homeostasis, although the need for powerful immunosuppressive regimens limits their application to only a subgroup of adult patients. Apart from the shortage of donors that has limited all kinds of transplantation, however, the widespread use of β-cell replacement has been precluded until recently by the drawbacks associated with both organ and islet cell transplantation. Although the study of recurrence of diabetes has generated attention, the fundamental obstacle to pancreas and islet transplantation has been, and remains, the alloimmune response. With a better elucidation of the mechanisms of alloengraftment achieved during the last 3 years, the stage has been set for further advances

    The Role of Cyclosporine and Mycophenolate in an Orthotopic Porcine-to-Rat Corneal Xenotransplantation

    Get PDF
    We performed this study to investigate the feature of rejection in porcine-to-rat corneal orthotopic transplantation and to evaluate the effect of cyclosporine and mycophenolate on the xeno-rejection. Orthotopic corneal transplantation was done at 91 Sprague-Dawley rats, and they were divided into 10 groups based on the combination of immunosuppressants including dexamethasone, cyclosporine, and mycophenolate mofetil. Graft survival was analyzed and grafted eyes were examined with Hematoxylin & Eosin and CD4 or CD8 staining. Enzyme-linked immunosorbent assays were done for interleukin-2 (IL-2), IL-4, IL-5, IL-10, and interferon (IFN)-γ in cornea, lacrimal gland, and cervical lymph nodes. The longest median survival of the immune suppressant group was 11.00±1.96 days, which showed no statistical differences compared with that of control (8.00±1.52 days). The neutrophils were prominent in the early phase but soon gave way to the monocytes. The number of CD8+ cells was higher than that of CD4+ cells. IL-2 and IFN-γ markedly increased at 10 to13 days in cornea, lacrimal glands, and cervical lymph nodes, which showed a decrease with immunosuppressants except in the cornea. In conclusion, cyclosporine and mycophenolate could not prevent the rejection in porcine to rat orthotopic corneal xenograft associated with infiltraton of CD8+ and innate immune cells

    Molecular composition of the peri-islet basement membrane in NOD mice: a barrier against destructive insulitis

    Get PDF
    Aims/hypothesisThis study examined whether the capsule which encases islets of Langerhans in the NOD mouse pancreas represents a specialised extracellular matrix (ECM) or basement membrane that protects islets from autoimmune attack.MethodsImmunofluorescence microscopy using a panel of antibodies to collagens type IV, laminins, nidogens and perlecan was performed to localise matrix components in NOD mouse pancreas before diabetes onset, at onset of diabetes and after clinical diabetes was established (2-8.5 weeks post-onset).ResultsPerlecan, a heparan sulphate proteoglycan that is characteristic of basement membranes and has not previously been investigated in islets, was localised in the peri-islet capsule and surrounding intra-islet capillaries. Other components present in the peri-islet capsule included laminin chains alpha2, beta1 and gamma1, collagen type IV alpha1 and alpha2, and nidogen 1 and 2. Collagen type IV alpha3-alpha6 were not detected. These findings confirm that the peri-islet capsule represents a specialised ECM or conventional basement membrane. The islet basement membrane was destroyed in islets where intra-islet infiltration of leucocytes marked the progression from non-destructive to destructive insulitis. No changes in basement membrane composition were observed before leucocyte infiltration.Conclusions/interpretationThese findings suggest that the islet basement membrane functions as a physical barrier to leucocyte migration into islets and that degradation of the islet basement membrane marks the onset of destructive autoimmune insulitis and diabetes development in NOD mice. The components of the islet basement membrane that we identified predict that specialised degradative enzymes are likely to function in autoimmune islet damage.H. F. Irving-Rodgers, A. F. Ziolkowski, C. R. Parish, Y. Sado, Y. Ninomiya, C. J. Simeonovic, R. J. Rodger

    Xenogeneic islet transplantation

    No full text
    corecore