45 research outputs found
Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study
We study the temperature-dilution phase diagram of a site-diluted Heisenberg
antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya
anisotropic term, fixed to realistic microscopic parameters for (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy
induces a finite-temperature phase transition to a spin glass phase, at
dilutions larger than 80%. The resulting probability distribution of the order
parameter P(q) is similar to the one found in the cubic lattice
Edwards-Anderson Ising model. The critical exponents undergo large finite size
corrections, but tend to values similar to the ones of the
Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure
Octupole transitions in the 208Pb region
The 208Pb region is characterised by the existence of collective octupole states. Here we populated such states in 208Pb + 208Pb deep-inelastic reactions. γ-ray angular distribution measurements were used to infer the octupole character of several E3 transitions. The octupole character of the 2318 keV 17- 14+ in 208Pb, 2485 keV 19/2- 13/2+ in 207Pb, 2419 keV 15/2- 9/2+ in 209Pb and 2465 keV 17/2+ 11/2- in 207Tl transitions was demonstrated for the first time. In addition, shell model calculations were performed using two different sets of two-body matrix elements. Their predictions were compared with emphasis on collective octupole states
Structure of 207Pb populated in 208Pb + 208Pb deep-inelastic collisions
The yrast structure of 207Pb above the 13=2+ isomeric state has been investigated in deep-inelastic collisions of 208Pb and 208Pb at ATLAS, Argonne National Laboratory. New and previously observed transitions were measured using the Gammasphere detector array. The level scheme of 207Pb is presented up to ∼ 6 MeV, built using coincidence and γ-ray intensity analyses. Spin and parity assignments of states were made, based on angular distributions and comparisons to shell model calculations
Core excitations across the neutron shell gap in 207Tl
The single closed-neutron-shell, one proton-hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations using two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states
Investigation of the Δn = 0 selection rule in Gamow-Teller transitions : The β-decay of 207 Hg
Gamow-Teller β decay is forbidden if the number of nodes in the radial wave functions of the initial and final states is different. This Δn=0 requirement plays a major role in the β decay of heavy neutron-rich nuclei, affecting the nucleosynthesis through the increased half-lives of nuclei on the astrophysical r-process pathway below both Z=50 (for N>82) and Z=82 (for N>126). The level of forbiddenness of the Δn=1ν1g 9/2 →π0g 7/2 transition has been investigated from the β − decay of the ground state of 207 Hg into the single-proton-hole nucleus 207 Tl in an experiment at the ISOLDE Decay Station. From statistical observational limits on possible γ-ray transitions depopulating the π0g 7/2 −1 state in 207 Tl, an upper limit of 3.9×10 −3 % was obtained for the probability of this decay, corresponding to logft>8.8 within a 95% confidence limit. This is the most stringent test of the Δn=0 selection rule to date
A História da Alimentação: balizas historiográficas
Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema
Skeletal stability of maxillary advancement with and without a mandibular reduction in the cleft lip and palate patient
A Mössbauer evaluation of cation distribution in titanomagnetites
Peak area analyses of Mössbauer spectra were used to directly appraise models of cation distribution in synthetic titanomagnetites, TixFe3_xO4(0 \u3c x \u3c 1). For x \u3c 0.30, room-temperature and zero-field data were sufficient for this purpose. At higher Ti concentrations, however, they were inconclusive or ineffective because the Mössbauer signals from Fe ions on both tetrahedral and octahedral sites were inextricable. Instead, Mössbauer spectra were collected at 4.2 K in a 7 T magnetic field. In these spectra, the signal from Fe3+ ions on the tetrahedral sites of the cubic spinels was effectively delineated, and on the basis of its area fraction a new cation distribution is proposed. © 1999 Elsevier Science B. V. All rights reserved
