95 research outputs found
Failover in cellular automata
A cellular automata (CA) configuration is constructed that exhibits emergent
failover. The configuration is based on standard Game of Life rules. Gliders
and glider-guns form the core messaging structure in the configuration. The
blinker is represented as the basic computational unit, and it is shown how it
can be recreated in case of a failure. Stateless failover using primary-backup
mechanism is demonstrated. The details of the CA components used in the
configuration and its working are described, and a simulation of the complete
configuration is also presented.Comment: 16 pages, 15 figures and associated video at
http://dl.dropbox.com/u/7553694/failover_demo.avi and simulation at
http://dl.dropbox.com/u/7553694/failover_simulation.ja
Redes Neurais artificiais e Sistema Adaptativo de Inferência Neuro Fuzzy para análise e previsão da produtividade do trigo
The current study evaluated the prediction of the yield of wheat crops in the Bagalkot district of Karnataka State, India. The study aimed to provide crop yield predictions to help farmers optimize their cultivation and marketing strategies. The model used various independent variables, such as temperature, humidity of air, and water resources, to predict growth in the yield of wheat crops. The correlation analysis helps determine the strength and direction of the relationship between the variables based on the results. The statistical analysis identifies the variables that have a significant impact on crop yield growth. The work developed and tested two different models (the Artificial Neural Network (ANN) model and the Adaptive Neuro-fuzzy Interference System (ANFIS) to predict crop yield growth based on the selected independent variables. The ANFIS model was particularly interesting as it can predict a mapping between the input and output parameters, which can be useful for understanding the relationships between different variables. ANFIS was considered a better predictor than ANN as the error percentage ranged from 0-3%. Overall, the work highlighted the importance of crop yield predictions and the potential benefits that simulations can generate for farmers and the agriculture sector in general.O presente estudo avaliou a previsão do rendimento das culturas de trigo no distrito de Bagalkot, do Estado de Karnataka, India. O estudo teve como objetivo fornecer previsões de rendimento das colheitas para ajudar os agricultores a otimizar suas estratégias de cultivo e comercialização. O modelo usou várias variáveis independentes tais como temperatura, humidade do ar e recursos hídricos para prever o crescimento no rendimento das culturas de trigo. O trabalho se desenvolveu e testou dois modelos diferentes: Modelo de Rede Neural Artificial (Artificial Neural Network – ANN) e Sistema de Interferência Neuro-fuzzy Adaptativo (Adaptive Neuro-fuzzy Interference System - ANFIS) a fim prever o crescimento do rendimento das culturas com base nas variáveis independentes selecionadas. O modelo ANFIS foi particularmente interessante, pois pôde prever um mapeamento entre os parâmetros de entrada e saída, os quais podem ser úteis para compreender a relação entre diferentes variáveis. ANFIS foi considerado um modelo de predição melhor que o modelo ANN, com uma porcentagem de erro variando de 0-3%. De maneira geral, o trabaho destacou a importância das previsões do rendimento das culturas e os potenciais benefícios que as simulações podem gerar para os agricultores e para o setor agrícola em geral
Surface finish and cutting efficiency in gingelly oil during machining: regression analysis
This study evaluates the use of gingelly oil as an eco-friendly cutting fluid for the turning operation. Experiments were conducted to determine the effect of nose radius, and rake angle on tool wear, surface formation, and cutting force. In addition, different lubrication techniques, such as cutting fluids and bio-oils, were investigated to determine their potential for minimising friction, heat generation, and tool wear during machining. In comparison to dry cutting, and conventional petroleum-based lubricants, the results demonstrate that gingelly oil consistently produces smoother surface finishes, and reduces cutting forces. The relationships between cutting parameters, and surface finish were analysed using statistical modelling, with R-square and p-values used to quantify correlations and predictor significance. The findings highlight the viability of gingelly oil as a cutting fluid and the significance of optimising process parameters for increased machining efficiency
ARTIFICIAL NEURAL NETWORKS AND ADAPTIVE NEURO FUZZY INFERENCE SYSTEM FOR WHEAT YIELD ANALYSIS AND PREDICTION
The current study evaluated the prediction of the yield of wheat crops in the Bagalkot district of Karnataka State, India. The study aimed to provide crop yield predictions to help farmers optimize their cultivation and marketing strategies. The model used various independent variables, such as temperature, humidity of air, and water resources, to predict growth in the yield of wheat crops. The correlation analysis helps determine the strength and direction of the relationship between the variables based on the results. The statistical analysis identifies the variables that have a significant impact on crop yield growth. The work developed and tested two different models (the Artificial Neural Network (ANN) model and the Adaptive Neuro-fuzzy Interference System (ANFIS) to predict crop yield growth based on the selected independent variables. The ANFIS model was particularly interesting as it can predict a mapping between the input and output parameters, which can be useful for understanding the relationships between different variables. ANFIS was considered a better predictor than ANN as the error percentage ranged from 0-3%. Overall, the work highlighted the importance of crop yield predictions and the potential benefits that simulations can generate for farmers and the agriculture sector in general
TENSILE STRENGTH, SURFACE MORPHOLOGY, AND PRELIMINARY CORRELATION ANALYSIS OF AL-17SI ALLOYS IN FRICTION STIR WELDING PROCESSES
This study examines the intricate dynamics of the Friction Stir Welding (FSW) process utilized on the challenging hypereutectic composition of Al-17Si alloys, which obstructs effective metal flow and mixing. Higher rotating speeds stimulate greater mixing, but lower rotational speeds (600 rpm) cause uneven metal circulation around the tool. The benefits of increasing rotation speed to 1200 rpm for stress and strain outweigh the disadvantages for tensile strength. The ideal tensile strength is reached at lower feed rates (50mm/min), in conjunction with precise plunging depth, ensuring consistent extrusion and material flow to produce fine Si particles. Shear forces brought on by uneven metal flow around the tool pin are what give the fracture surface its distinctive knife-edge characteristics; sharper edges appear at higher feed rates. Additionally, this work makes use of correlation and regression analysis to shed light on the complex relationships between important process variables and material characteristics, highlighting the essential components that control the FSW process for Al-17Si alloys. To optimize the FSW process and subsequently enhance joint quality and performance, these findings emphasize the significance of carefully choosing process parameters such as tool rotation, feed rates, and plunging force
Can fingernail quality predict bone damage in Type 2 diabetes mellitus? a pilot study
Type 2 diabetes mellitus (T2DM) adversely affects the normal functioning, intrinsic material properties, and structural integrity of many tissues, including bone. It is well known that the clinical utility of areal bone mineral density (aBMD) is limited to assess bone strength in individuals with T2DM. Therefore, there is a need to explore new diagnostic techniques that can better assist and improve the accuracy of assessment of bone tissue quality. The present study investigated the link between bone and fingernail material/compositional properties in type 2 diabetes mellitus (T2DM). For that, femoral head and fingernail samples were obtained from twenty-five adult female patients (with/without T2DM) with fragility femoral neck fractures undergoing hemi/total hip arthroplasty. Cylindrical cores of trabecular bone were subjected to micro-CT, and lower bone volume fraction was observed in the diabetic group than the non-diabetic group due to fewer and thinner trabeculae in individuals with T2DM. The material and compositional properties of bone/fingernail were estimated using nanoindentation and Fourier Transform Infrared Spectroscopy, respectively. Both bone/fingernails in T2DM had lower reduced modulus (Er), hardness (H), lower Amide I and Amide II area ratio (protein content), higher sugar-to-matrix ratio, and relatively high carboxymethyl-lysine (CML) content compared with non-diabetic patients. Sugar-to-matrix ratio and relative CML content were strongly and positively correlated with HbA1c for both bone/fingernail. There was a positive correlation between bone and fingernail glycation content. Our findings provide evidence that the degradation pattern of bone and fingernail properties go hand-in-hand in individuals with T2DM. Hence, the fingernail compositional/material properties might serve as a non-invasive surrogate marker of bone quality in T2DM; however, further large-scale studies need to be undertaken
Bilateral Transplantation of Allogenic Adult Human Bone Marrow-Derived Mesenchymal Stem Cells into the Subventricular Zone of Parkinson's Disease: A Pilot Clinical Study
The progress of PD and its related disorders cannot be prevented with the medications available. In this study, we recruited 8 PD and 4 PD plus patients between 5 to 15 years after diagnosis. All patients received BM-MSCs bilaterally into the SVZ and were followed up for 12 months. PD patients after therapy reported a mean improvement of 17.92% during “on” and 31.21% during “off” period on the UPDRS scoring system. None of the patients increased their medication during the follow-up period. Subjectively, the patients reported clarity in speech, reduction in tremors, rigidity, and freezing attacks. The results correlated with the duration of the disease. Those patients transplanted in the early stages of the disease (less than 5 years) showed more improvement and no further disease progression than the later stages (11–15 years). However, the PD plus patients did not show any change in their clinical status after stem cell transplantation. This study demonstrates the safety of adult allogenic human BM-MSCs transplanted into the SVZ of the brain and its efficacy in early-stage PD patients
An avian influenza A(H11N1) virus from a wild aquatic bird revealing a unique Eurasian-American genetic reassortment
Influenza surveillance in different wild bird populations is critical for understanding the persistence, transmission and evolution of these viruses. Avian influenza (AI) surveillance was undertaken in wild migratory and resident birds during the period 2007–2008, in view of the outbreaks of highly pathogenic AI (HPAI) H5N1 in poultry in India since 2006. In this study, we present the whole genome sequence data along with the genetic and virological characterization of an Influenza A(H11N1) virus isolated from wild aquatic bird for the first time from India. The virus was low pathogenicity and phylogenetic analysis revealed that it was distinct from reported H11N1 viruses. The hemagglutinin (HA) gene showed maximum similarity with A/semipalmatedsandpiper/Delaware/2109/2000 (H11N6) and A/shorebird/Delaware/236/2003(H11N9) while the neuraminidase (NA) gene showed maximum similarity with A/duck/Mongolia/540/2001(H1N1). The virus thus possessed an HA gene of the American lineage. The NA and other six genes were of the Eurasian lineage and showed closer relatedness to non-H11 viruses. Such a genetic reassortment is unique and interesting, though the pathways leading to its emergence and its future persistence in the avian reservoir is yet to be fully established
Measuring routine childhood vaccination coverage in 204 countries and territories, 1980-2019 : a systematic analysis for the Global Burden of Disease Study 2020, Release 1
Background Measuring routine childhood vaccination is crucial to inform global vaccine policies and programme implementation, and to track progress towards targets set by the Global Vaccine Action Plan (GVAP) and Immunization Agenda 2030. Robust estimates of routine vaccine coverage are needed to identify past successes and persistent vulnerabilities. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020, Release 1, we did a systematic analysis of global, regional, and national vaccine coverage trends using a statistical framework, by vaccine and over time. Methods For this analysis we collated 55 326 country-specific, cohort-specific, year-specific, vaccine-specific, and dosespecific observations of routine childhood vaccination coverage between 1980 and 2019. Using spatiotemporal Gaussian process regression, we produced location-specific and year-specific estimates of 11 routine childhood vaccine coverage indicators for 204 countries and territories from 1980 to 2019, adjusting for biases in countryreported data and reflecting reported stockouts and supply disruptions. We analysed global and regional trends in coverage and numbers of zero-dose children (defined as those who never received a diphtheria-tetanus-pertussis [DTP] vaccine dose), progress towards GVAP targets, and the relationship between vaccine coverage and sociodemographic development. Findings By 2019, global coverage of third-dose DTP (DTP3; 81.6% [95% uncertainty interval 80.4-82 .7]) more than doubled from levels estimated in 1980 (39.9% [37.5-42.1]), as did global coverage of the first-dose measles-containing vaccine (MCV1; from 38.5% [35.4-41.3] in 1980 to 83.6% [82.3-84.8] in 2019). Third- dose polio vaccine (Pol3) coverage also increased, from 42.6% (41.4-44.1) in 1980 to 79.8% (78.4-81.1) in 2019, and global coverage of newer vaccines increased rapidly between 2000 and 2019. The global number of zero-dose children fell by nearly 75% between 1980 and 2019, from 56.8 million (52.6-60. 9) to 14.5 million (13.4-15.9). However, over the past decade, global vaccine coverage broadly plateaued; 94 countries and territories recorded decreasing DTP3 coverage since 2010. Only 11 countries and territories were estimated to have reached the national GVAP target of at least 90% coverage for all assessed vaccines in 2019. Interpretation After achieving large gains in childhood vaccine coverage worldwide, in much of the world this progress was stalled or reversed from 2010 to 2019. These findings underscore the importance of revisiting routine immunisation strategies and programmatic approaches, recentring service delivery around equity and underserved populations. Strengthening vaccine data and monitoring systems is crucial to these pursuits, now and through to 2030, to ensure that all children have access to, and can benefit from, lifesaving vaccines. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
- …