1,234 research outputs found
Decaying Dark Matter in the Supersymmetric Standard Model with Freeze-in and Seesaw mechanims
Inspired by the decaying dark matter (DM) which can explain cosmic ray
anomalies naturally, we consider the supersymmetric Standard Model with three
right-handed neutrinos (RHNs) and R-parity, and introduce a TeV-scale DM sector
with two fields \phi_{1,2} and a discrete symmetry. The DM sector only
interacts with the RHNs via a very heavy field exchange and then we can explain
the cosmic ray anomalies. With the second right-handed neutrino N_2 dominant
seesaw mechanism at the low scale around 10^4 GeV, we show that \phi_{1,2} can
obtain the vacuum expectation values around the TeV scale, and then the
lightest state from \phi_{1,2} is the decay DM with lifetime around \sim
10^{26}s. In particular, the DM very long lifetime is related to the tiny
neutrino masses, and the dominant DM decay channels to \mu and \tau are related
to the approximate \mu-\tau symmetry. Furthermore, the correct DM relic density
can be obtained via the freeze-in mechanism, the small-scale problem for power
spectrum can be solved due to the decays of the R-parity odd meta-stable states
in the DM sector, and the baryon asymmetry can be generated via the soft
leptogensis.Comment: 24 pages,3 figure
Probing natural SUSY from stop pair production at the LHC
We consider the natural supersymmetry scenario in the framework of the
R-parity conserving minimal supersymmetric standard model (called natural MSSM)
and examine the observability of stop pair production at the LHC. We first scan
the parameters of this scenario under various experimental constraints,
including the SM-like Higgs boson mass, the indirect limits from precision
electroweak data and B-decays. Then in the allowed parameter space we study the
stop pair production at the LHC followed by the stop decay into a top quark
plus a lightest neutralino or into a bottom quark plus a chargino. From
detailed Monte Carlo simulations of the signals and backgrounds, we find the
two decay modes are complementary to each other in probing the stop pair
production, and the LHC with TeV and 100 luminosity is
capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no
excess events were observed at the LHC, the 95% C.L. exclusion limits of the
stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
To hit or not to hit, that is the question -genome-wide structure-based druggability predictions for <i>pseudomonas aeruginosa </i>proteins
Pseudomonas aeruginosa is a Gram-negative bacterium known to cause opportunistic infections in immune-compromised or immunosuppressed individuals that often prove fatal. New drugs to combat this organism are therefore sought after. To this end, we subjected the gene products of predicted perturbative genes to structure-based druggability predictions using DrugPred. Making this approach suitable for large-scale predictions required the introduction of new methods for calculation of descriptors, development of a workflow to identify suitable pockets in homologous proteins and establishment of criteria to obtain valid druggability predictions based on homologs. We were able to identify 29 perturbative proteins of P. aeruginosa that may contain druggable pockets, including some of them with no or no drug-like inhibitors deposited in ChEMBL. These proteins form promising novel targets for drug discovery against P. aeruginosa
Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects
Background: Retinitis pigmentosa is a heterogeneous group of inherited neurodegenerative retinal disorders characterized by a progressive peripheral vision loss and night vision difficulties, subsequently leading to central vision impairment. Chronic microglia activation is associated with various neurodegenerative diseases including retinitis pigmentosa. The objective of this study was to quantify microglia activation in the retina of P23H rats, an animal model of retinitis pigmentosa, and to evaluate the therapeutic effects of TUDCA (tauroursodeoxycholic acid), which has been described as a neuroprotective compound. Methods: For this study, homozygous P23H line 3 and Sprague-Dawley (SD) rats were injected weekly with TUDCA (500 mg/kg, ip) or vehicle (saline) from 20 days to 4 months old. Vertical retinal sections and whole-mount retinas were immunostained for specific markers of microglial cells (anti-CD11b, anti-Iba1 and anti-MHC-II). Microglial cell morphology was analyzed and the number of retinal microglial was quantified. Results: Microglial cells in the SD rat retinas were arranged in regular mosaics homogenously distributed within the plexiform and ganglion cell layers. In the P23H rat retina, microglial cells increased in number in all layers compared with control SD rat retinas, preserving the regular mosaic distribution. In addition, a large number of amoeboid CD11b-positive cells were observed in the P23H rat retina, even in the subretinal space. Retinas of TUDCA-treated P23H animals exhibited lower microglial cell number in all layers and absence of microglial cells in the subretinal space. Conclusions: These results report novel TUDCA anti-inflammatory actions, with potential therapeutic implications for neurodegenerative diseases, including retinitis pigmentosa.This research was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BFU2012-36845), Instituto de Salud Carlos III (RETICS RD12/0034/0010), Organización Nacional de Ciegos Españoles (ONCE), FUNDALUCE, Asociación Retina Asturias and Fundación Jesús de Gangoiti
Next-generation mitogenomics: A comparison of approaches applied to caecilian amphibian phylogeny
Mitochondrial genome (mitogenome) sequences are being generated with increasing speed due to the advances of next-generation sequencing (NGS) technology and associated analytical tools. However, detailed comparisons to explore the utility of alternative NGS approaches applied to the same taxa have not been undertaken. We compared a 'traditional' Sanger sequencing method with two NGS approaches (shotgun sequencing and non-indexed, multiplex amplicon sequencing) on four different sequencing platforms (Illumina's HiSeq and MiSeq, Roche's 454 GS FLX, and Life Technologies' Ion Torrent) to produce seven (near-) complete mitogenomes from six species that form a small radiation of caecilian amphibians from the Seychelles. The fastest, most accurate method of obtaining mitogenome sequences that we tested was direct sequencing of genomic DNA (shotgun sequencing) using the MiSeq platform. Bayesian inference and maximum likelihood analyses using seven different partitioning strategies were unable to resolve compellingly all phylogenetic relationships among the Seychelles caecilian species, indicating the need for additional data in this case
Observation of the Decay
Using e+e- annihilation data collected by the CLEO~II detector at CESR, we
have observed the decay Ds+ to omega pi+. This final state may be produced
through the annihilation decay of the Ds+, or through final state interactions.
We find a branching ratio of [Gamma(Ds+ to omega pi+)/Gamma(Ds+ to eta
pi+)]=0.16+-0.04+-0.03, where the first error is statistical and the second is
systematic.Comment: 9 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
Estimation of Short-Term Effects of Air Pollution on Stroke Hospital Admissions in Wuhan, China
Background and Objective:High concentrations of air pollutants have been linked to increased incidence of stroke in North America and Europe but not yet assessed in mainland China. The aim of this study is to evaluate the association between stroke hospitalization and short-term elevation of air pollutants in Wuhan, China.Methods:Daily mean NO2, SO2 and PM10 levels, temperature and humidity were obtained from 2006 through 2008. Data on stroke hospitalizations (ICD 10: I60-I69) at four hospitals in Wuhan were obtained for the same period. A time-stratified case-crossover design was performed by season (April-September and October-March) to assess effects of pollutants on stroke hospital admissions.Results:Pollution levels were higher in October-March with averages of 136.1 μg/m3 for PM10, 63.6 μg/m3 for NO2 and 71.0 μg/m3 for SO2 than in April-September when averages were 102.0 μg/m3, 41.7 μg/m3 and 41.7 μg/m3, respectively (p<.001). During the cold season, every 10 μg/m3 increase in NO2 was associated with a 2.9% (95%C.I. 1.2%-4.6%) increase in stroke admissions on the same day. Every 10 ug/m3 increase in PM10 daily concentration was significantly associated with an approximate 1% (95% C.I. 0.1%-1.4%) increase in stroke hospitalization. A two-pollutant model indicated that NO2 was associated with stroke admissions when controlling for PM10. During the warm season, no significant associations were noted for any of the pollutants.Conclusions:Exposure to NO2 is significantly associated with stroke hospitalizations during the cold season in Wuhan, China when pollution levels are 50% greater than in the warm season. Larger and multi-center studies in Chinese cities are warranted to validate our findings. © 2013 Xiang et al
Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity
- …
