9,829 research outputs found
Inhomogeneous mechanical losses in micro-oscillators with high reflectivity coating
We characterize the mechanical quality factor of micro-oscillators covered by
a highly reflective coating. We test an approach to the reduction of mechanical
losses, that consists in limiting the size of the coated area to reduce the
strain and the consequent energy loss in this highly dissipative component.
Moreover, a mechanical isolation stage is incorporated in the device. The
results are discussed on the basis of an analysis of homogeneous and
non-homogeneous losses in the device and validated by a set of Finite-Element
models. The contributions of thermoelastic dissipation and coating losses are
separated and the measured quality factors are found in agreement with the
calculated values, while the absence of unmodeled losses confirms that the
isolation element integrated in the device efficiently uncouples the dynamics
of the mirror from the support system. Also the resonant frequencies evaluated
by Finite-Element models are in good agreement with the experimental data, and
allow the estimation of the Young modulus of the coating. The models that we
have developed and validated are important for the design of oscillating
micro-mirrors with high quality factor and, consequently, low thermal noise.
Such devices are useful in general for high sensitivity sensors, and in
particular for experiments of quantum opto-mechanics
Detection of weak stochastic force in a parametrically stabilized micro opto-mechanical system
Measuring a weak force is an important task for micro-mechanical systems,
both when using devices as sensitive detectors and, particularly, in
experiments of quantum mechanics. The optimal strategy for resolving a weak
stochastic signal force on a huge background (typically given by thermal noise)
is a crucial and debated topic, and the stability of the mechanical resonance
is a further, related critical issue. We introduce and analyze the parametric
control of the optical spring, that allows to stabilize the resonance and
provides a phase reference for the oscillator motion, yet conserving a free
evolution in one quadrature of the phase space. We also study quantitatively
the characteristics of our micro opto-mechanical system as detector of
stochastic force for short measurement times (for quick, high resolution
monitoring) as well as for the longer term observations that optimize the
sensitivity. We compare a simple, naive strategy based on the evaluation of the
variance of the displacement (that is a widely used technique) with an optimal
Wiener-Kolmogorov data analysis. We show that, thanks to the parametric
stabilization of the effective susceptibility, we can more efficiently
implement Wiener filtering, and we investigate how this strategy improves the
performance of our system. We finally demonstrate the possibility to resolve
stochastic force variations well below 1% of the thermal noise
An ultra-low dissipation micro-oscillator for quantum opto-mechanics
Generating non-classical states of light by opto-mechanical coupling depends
critically on the mechanical and optical properties of micro-oscillators and on
the minimization of thermal noise. We present an oscillating micro-mirror with
a mechanical quality factor Q = 2.6x10^6 at cryogenic temperature and a Finesse
of 65000, obtained thanks to an innovative approach to the design and the
control of mechanical dissipation. Already at 4 K with an input laser power of
2 mW, the radiation-pressure quantum fluctuations become the main noise source,
overcoming thermal noise. This feature makes our devices particularly suitable
for the production of pondero-motive squeezing.Comment: 21 pages including Supplementary Informatio
Semantic Object Parsing with Graph LSTM
By taking the semantic object parsing task as an exemplar application
scenario, we propose the Graph Long Short-Term Memory (Graph LSTM) network,
which is the generalization of LSTM from sequential data or multi-dimensional
data to general graph-structured data. Particularly, instead of evenly and
fixedly dividing an image to pixels or patches in existing multi-dimensional
LSTM structures (e.g., Row, Grid and Diagonal LSTMs), we take each
arbitrary-shaped superpixel as a semantically consistent node, and adaptively
construct an undirected graph for each image, where the spatial relations of
the superpixels are naturally used as edges. Constructed on such an adaptive
graph topology, the Graph LSTM is more naturally aligned with the visual
patterns in the image (e.g., object boundaries or appearance similarities) and
provides a more economical information propagation route. Furthermore, for each
optimization step over Graph LSTM, we propose to use a confidence-driven scheme
to update the hidden and memory states of nodes progressively till all nodes
are updated. In addition, for each node, the forgets gates are adaptively
learned to capture different degrees of semantic correlation with neighboring
nodes. Comprehensive evaluations on four diverse semantic object parsing
datasets well demonstrate the significant superiority of our Graph LSTM over
other state-of-the-art solutions.Comment: 18 page
The magnetic precursor of L1448-mm: Excitation differences between ion and neutral fluids
Shock modelling predicts an electron density enhancement within the magnetic
precursor of C-shocks. Previous observations of SiO, H13CO+, HN13C and H13CN
toward the young L1448-mm outflow showed an over-excitation of the ion fluid
that was attributed to an electron density enhancement in the precursor. We
re-visit this interpretation and test if it still holds when we consider
different source morphologies and kinetic temperatures for the observed
molecules, and also give some insight on the spatial extent of the electron
density enhancement around L1448-mm.
We estimate the opacities of H13CO+ and HN13C by observing the J=3\to2 lines
of rarer isotopologues to confirm that the emission is optically thin. To model
the excitation of the molecules, we use the large velocity gradient (LVG)
approximation with updated collisional coefficients to i) re- analyse the
observations toward the positions where the over-excitation of H13CO+ has
previously been observed [i.e. toward L1448- mm at offsets (0,0) and (0,-10)],
and ii) to investigate if the electron density enhancement is still required
for the cases of extended and compact emission, and for kinetic temperatures of
up to 400 K. We also report several lines of SiO, HN13C and H13CO+ toward new
positions around this outflow, to investigate the spatial extent of the
over-excitation of the ions in L1448-mm. From the isotopologue observations, we
find that the emission of H13CO+ and HN13C from the precursor is optically thin
if this emission is extended. Using the new collisional coefficients, an
electron density enhancement is still needed to explain the excitation of
H13CO+ for extended emission and for gas temperatures of\le 400 K toward
L1448-mm (0,-10), and possibly also toward L1448-mm (0,0). For compact emission
the data cannot be fitted. We do not find any evidence for the over-excitation
of the ion fluid toward the newly observed positions around L1448-mm.
The observed line emission of SiO, H13CO+ and HN13C toward L1448-mm (0,0) and
(0,-10) is consistent with an electron density enhancement in the precursor
component, if this emission is spatially extended. This is also true for the
case of high gas temperatures (\le400 K) toward the (0,-10) offset. The
electron density enhancement seems to be restricted to the southern, redshifted
lobe of the L1448-mm outflow. Interferometric images of the line emission of
these molecules are needed to confirm the spatial extent of the over-excitation
of the ions and thus, of the electron density enhancement in the magnetic
precursor of L1448-mm.Comment: Accepted for publication in A&A; 9 pages, 3 figure
Frequency noise cancellation in optomechanical systems for ponderomotive squeezing
Ponderomotive squeezing of the output light of an optical cavity has been
recently observed in the MHz range in two different cavity optomechanical
devices. Quadrature squeezing becomes particularly useful at lower spectral
frequencies, for example in gravitational wave interferometers, despite being
more sensitive to excess phase and frequency noise. Here we show a
phase/frequency noise cancellation mechanism due to destructive interference
which can facilitate the production of ponderomotive squeezing in the kHz range
and we demonstrate it experimentally in an optomechanical system formed by a
Fabry-P\'{e}rot cavity with a micro-mechanical mirror.Comment: 11 pages, 9 figures. Physical explanation expanded. Modified figure
First Principles Calculations of Charge and Spin Density Waves of sqr3-Adsorbates on Semiconductors
We present ab-initio electronic structure results on the surface of sqr3
adsorbates. In particular, we address the issue of metal-insulator
instabilities, charge-density-waves (CDWs) or spin-density-waves (SDWs), driven
by partly filled surface states and their 2D Fermi surface, and/or by the onset
of magnetic instabilities. The focus is both on the newly discovered
commensurate CDW transitions in the Pb/Ge(111) and Sn/Ge(111) structures, and
on the puzzling semiconducting behavior of the Pb/Ge(111), K/Si(111):B and
SiC(0001) surfaces. In all cases, the main factor driving the instability
appears to be an extremely narrow surface state band. We have carried out so
far preliminary calculations for the Si/Si(111) surface, chosen as our model
system, within the gradient corrected local density (LDA+GC) and local spin
density (LSD+GC) approximations, with the aim of understanding the possible
interplay between 2D Fermi surface and electron correlations in the surface +
adsorbate system. Our spin- unrestricted results show that the sqr3
paramagnetic surface is unstable towards a commensurate SDW with periodicity
3x3 and magnetization 1/3.Comment: 9 pages, 4 Postscript figures, to be published in Surf. Sc
Collisional excitation of interstellar PO(X-2 Pi) by He: new ab initio potential energy surfaces and scattering calculations
We acknowledge the financial support from the COST Action CM1401 “Our Astrochemical History”. This research utilized Queen Mary's Mid-Plus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1. S. M. acknowledges Indigo Dean for very useful discussions. I. J.-S. acknowledges the financial support received from the STFC through an Ernest Rutherford Fellowship (proposal number ST/L004801)
- …