We characterize the mechanical quality factor of micro-oscillators covered by
a highly reflective coating. We test an approach to the reduction of mechanical
losses, that consists in limiting the size of the coated area to reduce the
strain and the consequent energy loss in this highly dissipative component.
Moreover, a mechanical isolation stage is incorporated in the device. The
results are discussed on the basis of an analysis of homogeneous and
non-homogeneous losses in the device and validated by a set of Finite-Element
models. The contributions of thermoelastic dissipation and coating losses are
separated and the measured quality factors are found in agreement with the
calculated values, while the absence of unmodeled losses confirms that the
isolation element integrated in the device efficiently uncouples the dynamics
of the mirror from the support system. Also the resonant frequencies evaluated
by Finite-Element models are in good agreement with the experimental data, and
allow the estimation of the Young modulus of the coating. The models that we
have developed and validated are important for the design of oscillating
micro-mirrors with high quality factor and, consequently, low thermal noise.
Such devices are useful in general for high sensitivity sensors, and in
particular for experiments of quantum opto-mechanics