967 research outputs found
Chronic Porphyromonas gingivalis infection accelerates the occurrence of age-related granules in ApoE-/- mice brains
This study explored the origin of age-related granules in the apolipoprotein E gene knockout (ApoE−/−) B6 background mice brains following chronic gingival infection with Porphyromonas gingivalis for 24 weeks. Intracerebral localization of P. gingivalis was detected by fluorescence in situ hybridization (FISH) and its protease by immunohistochemistry. The age-related granules were observed by periodic acid–Schiff (PAS), silver impregnation, and immunostaining. FISH showed intracerebral dissemination of P. gingivalis cells (p = 0.001). PAS and silver impregnation demonstrated the presence of larger inclusions restricted to the CA1, CA2, and dentate gyrus sectors of the hippocampus. A specific monoclonal antibody to bacterial peptidoglycan detected clusters of granules with variable sizes in mice brains infected with P. gingivalis (p = 0.004), and also highlighted areas of diffuse punctate staining equating to physical tissue damage. Mouse immunoglobulin G was observed in the capillaries of the cerebral parenchyma of all P. gingivalis–infected brains (p = 0.001), and on pyramidal neurons in some severely affected mice, compared with the sham-infected mice. Gingipains was also observed in microvessels of the hippocampus in the infected mice. This study supports the possibility of early appearance of age-related granules in ApoE−/− mice following inflammation-mediated tissue injury, accompanied by loss of cerebral blood-brain barrier integrity
Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis
The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae.
This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics
Factors Affecting the Work-life Balance of Flight Instructors
In recent years, work-life balance has become a key area of concern for employees and organizations all over the world. Employees’ work-life balance has a direct impact on their quality of life, work, and personal well-being. While many researchers have conducted studies investigating the factors affecting work-life balance for various group of employees—e.g., remote workers, female bank employees, corporate managers, physicians and clinicians, etc., work-life balance for flight instructors has never been studied. Flight instructors provide critical service for the aviation industry by teaching students how to fly aircrafts through classroom, simulator, and live flight instruction. They are required to have a pilot\u27s license and instructor certification. Although flight instructors usually do not fly more than eight hours a day, their work schedules can be irregular and unpredictable. They may also be required to work during weekends and evening hours. Naturally, balancing work and family responsibilities is not easy for flight instructors. This research will investigate the factors affecting work-life balance for flight instructors. Data will be collected using an online questionnaire and respondents will be selected through convenience sampling. Data analysis will be carried out by using confirmatory factor analysis. This work-in-progress poster contributes to the aviation industry by providing valuable insight into how flight instructors perceive the quality of their work-life balance. Results of this paper should benefit readers better understand many critical aspects of flight instructors’ duties and responsibilities. Results should also help increasing flight instructors’ productivity, well-being, and engagement, and reducing their stress and absenteeism
Electrically Robust Single-Crystalline WTe2 Nanobelts for Nanoscale Electrical Interconnects
As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlOx capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching approximate to 100 MA cm(-2), remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (approximate to 16.4 W cm(-1)) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics
Combustion in thermonuclear supernova explosions
Type Ia supernovae are associated with thermonuclear explosions of white
dwarf stars. Combustion processes convert material in nuclear reactions and
release the energy required to explode the stars. At the same time, they
produce the radioactive species that power radiation and give rise to the
formation of the observables. Therefore, the physical mechanism of the
combustion processes, as reviewed here, is the key to understand these
astrophysical events. Theory establishes two distinct modes of propagation for
combustion fronts: subsonic deflagrations and supersonic detonations. Both are
assumed to play an important role in thermonuclear supernovae. The physical
nature and theoretical models of deflagrations and detonations are discussed
together with numerical implementations. A particular challenge arises due to
the wide range of spatial scales involved in these phenomena. Neither the
combustion waves nor their interaction with fluid flow and instabilities can be
directly resolved in simulations. Substantial modeling effort is required to
consistently capture such effects and the corresponding techniques are
discussed in detail. They form the basis of modern multidimensional
hydrodynamical simulations of thermonuclear supernova explosions. The problem
of deflagration-to-detonation transitions in thermonuclear supernova explosions
is briefly mentioned.Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 24 pages, 4 figure
Biofilter aquaponic system for nutrients removal from fresh market wastewater
Aquaponics is a significant wastewater treatment system which refers to the combination of conventional aquaculture (raising aquatic organism) with hydroponics (cultivating plants in water) in a symbiotic environment. This system has a high ability in removing nutrients compared to conventional methods because it is a natural and environmentally friendly system (aquaponics). The current chapter aimed to review the possible application of aquaponics system to treat fresh market wastewater with the intention to highlight the mechanism of phytoremediation occurs in aquaponic system. The literature revealed that aquaponic system was able to remove nutrients in terms of nitrogen and phosphorus
Prediction Data Processing Scheme using an Artificial Neural Network and Data Clustering for Big Data
Various types of derivative information have been increasing exponentially, based on mobile devices and social networking sites (SNSs), and the information technologies utilizing them have also been developing rapidly. Technologies to classify and analyze such information are as important as data generation. This study concentrates on data clustering through principal component analysis and K-means algorithms to analyze and classify user data efficiently. We propose a technique of changing the cluster choice before cluster processing in the existing K-means practice into a variable cluster choice through principal component analysis, and expanding the scope of data clustering. The technique also applies an artificial neural network learning model for user recommendation and prediction from the clustered data. The proposed processing model for predicted data generated results that improved the existing artificial neural network–based data clustering and learning model by approximately 9.25%
Virus-like particles and cellular changes in plants infected with sweetpotato viruses
Studies with the transmission electron microscope were used to detect and attempt to identify viruses infecting sweetpotato (Ipomoea batatas) and other Ipomoea species. Flexuous-rods, short curved-rods, and spherical viruslike particles were observed in cells of symptomatic plants. Also, various cytopathic changes such as crystals, vesicles, fibril structures, and cylindrical inclusions were observed. The present study showed that some of these cytopathic changes were associated with some viral groups, which might be helpful in diagnosis. © The Korean Society of Plant Pathology
GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy
We propose to perform a continuously scanning all-sky survey from 200 keV to
80 MeV achieving a sensitivity which is better by a factor of 40 or more
compared to the previous missions in this energy range. The Gamma-Ray Imaging,
Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in
ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS
has its focus on the evolving, violent Universe, exploring a unique energy
window. We propose to investigate -ray bursts and blazars, the
mechanisms behind supernova explosions, nucleosynthesis and spallation, the
enigmatic origin of positrons in our Galaxy, and the nature of radiation
processes and particle acceleration in extreme cosmic sources including pulsars
and magnetars. The natural energy scale for these non-thermal processes is of
the order of MeV. Although they can be partially and indirectly studied using
other methods, only the proposed GRIPS measurements will provide direct access
to their primary photons. GRIPS will be a driver for the study of transient
sources in the era of neutrino and gravitational wave observatories such as
IceCUBE and LISA, establishing a new type of diagnostics in relativistic and
nuclear astrophysics. This will support extrapolations to investigate star
formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic
Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
Spatial heterogeneity and peptide availability determine CTL killing efficiency in vivo
The rate at which a cytotoxic T lymphocyte (CTL) can survey for infected cells is a key ingredient of models of vertebrate immune responses to intracellular pathogens. Estimates have been obtained using in vivo cytotoxicity assays in which peptide-pulsed splenocytes are killed by CTL in the spleens of immunised mice. However the spleen is a heterogeneous environment and splenocytes comprise multiple cell types. Are some cell types intrinsically more susceptible to lysis than others? Quantitatively, what impacts are made by the spatial distribution of targets and effectors, and the level of peptide-MHC on the target cell surface? To address these questions we revisited the splenocyte killing assay, using CTL specific for an epitope of influenza virus. We found that at the cell population level T cell targets were killed more rapidly than B cells. Using modeling, quantitative imaging and in vitro killing assays we conclude that this difference in vivo likely reflects different migratory patterns of targets within the spleen and a heterogeneous distribution of CTL, with no detectable difference in the intrinsic susceptibilities of the two populations to lysis. Modeling of the stages involved in the detection and killing of peptide-pulsed targets in vitro revealed that peptide dose influenced the ability of CTL to form conjugates with targets but had no detectable effect on the probability that conjugation resulted in lysis, and that T cell targets took longer to lyse than B cells. We also infer that incomplete killing in vivo of cells pulsed with low doses of peptide may be due to a combination of heterogeneity in peptide uptake and the dissociation, but not internalisation, of peptide-MHC complexes. Our analyses demonstrate how population-averaged parameters in models of immune responses can be dissected to account for both spatial and cellular heterogeneity
- …
