694 research outputs found

    Reinforcing and neurochemical effects of the "bath salts" constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats.

    Get PDF
    RATIONALE: 3,4-Methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) are synthetic drugs found in so-called "bath salts" products. Both drugs exert their effects by interacting with monoamine transporter proteins. MDPV is a potent uptake blocker at transporters for dopamine and norepinephrine while methylone is a non-selective releaser at transporters for dopamine, norepinephrine, and serotonin (5-HT). OBJECTIVES: We hypothesized that prominent 5-HT-releasing actions of methylone would render this drug less reinforcing than MDPV. METHODS: To test this hypothesis, we compared behavioral effects of MDPV and methylone using intravenous (i.v.) self-administration on a fixed-ratio 1 schedule in male rats. Additionally, neurochemical effects of the drugs were examined using in vivo microdialysis in nucleus accumbens, in a separate cohort of rats. RESULTS: MDPV self-administration (0.03 mg/kg/inj) was acquired rapidly and reached 40 infusions per session, similar to the effects of cocaine (0.5 mg/kg/inj), by the end of training. In contrast, methylone self-administration (0.3 and 0.5 mg/kg/inj) was acquired slowly, and response rates only reached 20 infusions per session by the end of training. In dose substitution studies, MDPV and cocaine displayed typical inverted U-shaped dose-effect functions, but methylone did not. In vivo microdialysis revealed that i.v. MDPV (0.1 and 0.3 mg/kg) increased extracellular dopamine while i.v. methylone (1 and 3 mg/kg) increased extracellular dopamine and 5-HT. CONCLUSIONS: Our findings support the hypothesis that elevations in extracellular 5-HT in the brain can dampen positive reinforcing effects of cathinone-type drugs. Nevertheless, MDPV and methylone are both self-administered by rats, suggesting these drugs possess significant abuse liability in humans

    Emotional intelligence buffers the effect of physiological arousal on dishonesty

    Get PDF
    We studied the emotional processes that allow people to balance two competing desires: benefitting from dishonesty and keeping a positive self-image. We recorded physiological arousal (skin conductance and heart rate) during a computer card game in which participants could cheat and fail to report a certain card when presented on the screen to avoid losing their money. We found that higher skin conductance corresponded to lower cheating rates. Importantly, emotional intelligence regulated this effect; participants with high emotional intelligence were less affected by their physiological reactions than those with low emotional intelligence. As a result, they were more likely to profit from dishonesty. However, no interaction emerged between heart rate and emotional intelligence. We suggest that the ability to manage and control emotions can allow people to overcome the tension between doing right or wrong and license them to bend the rules

    Revisiting Scalar and Pseudoscalar Couplings with Nucleons

    Full text link
    Certain dark matter interactions with nuclei are mediated possibly by a scalar or pseudoscalar Higgs boson. The estimation of the corresponding cross sections requires a correct evaluation of the couplings between the scalar or pseudoscalar Higgs boson and the nucleons. Progress has been made in two aspects relevant to this study in the past few years. First, recent lattice calculations show that the strange-quark sigma term σs\sigma_s and the strange-quark content in the nucleon are much smaller than what are expected previously. Second, lattice and model analyses imply sizable SU(3) breaking effects in the determination on the axial-vector coupling constant gA8g_A^8 that in turn affect the extraction of the isosinglet coupling gA0g_A^0 and the strange quark spin component Δs\Delta s from polarized deep inelastic scattering experiments. Based on these new developments, we re-evaluate the relevant nucleon matrix elements and compute the scalar and pseudoscalar couplings of the proton and neutron. We also find that the strange quark contribution in both types of couplings is smaller than previously thought.Comment: 17 pages, Sec. II is revised and the pion-nucleon sigma term extracted from the scattering data is discussed. Version to appear in JHE

    The NTI-tss device for the therapy of bruxism, temporomandibular disorders, and headache – Where do we stand? A qualitative systematic review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The NTI-tss device is an anterior bite stop, which, according to the manufacturer, is indicated for the prevention and treatment of bruxism, temporomandibular disorders (TMDs), tension-type headaches, and migraine. The aim of this systematic review was to appraise the currently available evidence regarding the efficacy and safety of the NTI-tss splint.</p> <p>Methods</p> <p>We performed a systematic search in nine electronic databases and in NTI-tss-associated websites (last update: December 31, 2007). The reference lists of all relevant articles were perused. Five levels of scientific quality were distinguished. Reporting quality of articles about randomized controlled trials (RCTs) was evaluated using the Jadad score. To identify adverse events, we searched in the identified publications and in the MAUDE database.</p> <p>Results</p> <p>Nine of 68 relevant publications reported about the results of five different RCTs. Two RCTs concentrated on electromyographic (EMG) investigations in patients with TMDs and concomitant bruxism (Baad-Hansen et al 2007, Jadad score: 4) or with bruxism alone (Kavaklı 2006, Jadad score: 2); in both studies, compared to an occlusal stabilization splint the NTI-tss device showed significant reduction of EMG activity. Two RCTs focused exclusively on TMD patients; in one trial (Magnusson et al 2004, Jadad score: 3), a stabilization appliance led to greater improvement than an NTI-tss device, while in the other study (Jokstad et al 2005, Jadad score: 5) no difference was found. In one RCT (Shankland 2002, Jadad score: 1), patients with tension-type headache or migraine responded more favorably to the NTI-tss splint than to a bleaching tray. NTI-tss-induced complications related predominantly to single teeth or to the occlusion.</p> <p>Conclusion</p> <p>Evidence from RCTs suggests that the NTI-tss device may be successfully used for the management of bruxism and TMDs. However, to avoid potential unwanted effects, it should be chosen only if certain a patient will be compliant with follow-up appointments. The NTI-tss bite splint may be justified when a reduction of jaw closer muscle activity (e.g., jaw clenching or tooth grinding) is desired, or as an emergency device in patients with acute temporomandibular pain and, possibly, restricted jaw opening.</p

    Differential sensitivity of Src-family kinases to activation by SH3 domain displacement

    Get PDF
    Src-family kinases (SFKs) are non-receptor protein-tyrosine kinases involved in a variety of signaling pathways in virtually every cell type. The SFKs share a common negative regulatory mechanism that involves intramolecular interactions of the SH3 domain with the PPII helix formed by the SH2-kinase linker as well as the SH2 domain with a conserved phosphotyrosine residue in the C-terminal tail. Growing evidence suggests that individual SFKs may exhibit distinct activation mechanisms dictated by the relative strengths of these intramolecular interactions. To elucidate the role of the SH3:linker interaction in the regulation of individual SFKs, we used a synthetic SH3 domain-binding peptide (VSL12) to probe the sensitivity of downregulated c-Src, Hck, Lyn and Fyn to SH3-based activation in a kinetic kinase assay. All four SFKs responded to VSL12 binding with enhanced kinase activity, demonstrating a conserved role for SH3:linker interaction in the control of catalytic function. However, the sensitivity and extent of SH3-based activation varied over a wide range. In addition, autophosphorylation of the activation loops of c-Src and Hck did not override regulatory control by SH3:linker displacement, demonstrating that these modes of activation are independent. Our results show that despite the similarity of their downregulated conformations, individual Src-family members show diverse responses to activation by domain displacement which may reflect their adaptation to specific signaling environments in vivo. © 2014 Moroco et al

    Functional and Structural Insights Revealed by Molecular Dynamics Simulations of an Essential RNA Editing Ligase in Trypanosoma brucei

    Get PDF
    RNA editing ligase 1 (TbREL1) is required for the survival of both the insect and bloodstream forms of Trypanosoma brucei, the parasite responsible for the devastating tropical disease African sleeping sickness. The type of RNA editing that TbREL1 is involved in is unique to the trypanosomes, and no close human homolog is known to exist. In addition, the high-resolution crystal structure revealed several unique features of the active site, making this enzyme a promising target for structure-based drug design. In this work, two 20 ns atomistic molecular dynamics (MD) simulations are employed to investigate the dynamics of TbREL1, both with and without the ATP substrate present. The flexibility of the active site, dynamics of conserved residues and crystallized water molecules, and the interactions between TbREL1 and the ATP substrate are investigated and discussed in the context of TbREL1's function. Differences in local and global motion upon ATP binding suggest that two peripheral loops, unique to the trypanosomes, may be involved in interdomain signaling events. Notably, a significant structural rearrangement of the enzyme's active site occurs during the apo simulations, opening an additional cavity adjacent to the ATP binding site that could be exploited in the development of effective inhibitors directed against this protozoan parasite. Finally, ensemble averaged electrostatics calculations over the MD simulations reveal a novel putative RNA binding site, a discovery that has previously eluded scientists. Ultimately, we use the insights gained through the MD simulations to make several predictions and recommendations, which we anticipate will help direct future experimental studies and structure-based drug discovery efforts against this vital enzyme

    Potential advantages of cell administration on the inflammatory response compared to standard ACE inhibitor treatment in experimental myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bone Marrow (BM) progenitor cells can target the site of myocardial injury, contributing to tissue repair by neovascolarization and/or by a possible direct paracrine effect on the inflammatory cascade. Angiotensin Converting Enzyme inhibitors (ACE-I) are effective in reducing mortality and preventing left ventricular (LV) function deterioration after myocardial infarction.</p> <p>Methods</p> <p>We investigated the short term effects of BM mononuclear cells (BMMNCs) therapy on the pro-inflammatory cytokines (pro-CKs) and on LV remodelling and compared these effects over a standard ACE-I therapy in a rat model of myocardial cryodamage.</p> <p>Forty two adult inbread Fisher-F344 rats were randomized into three groups: untreated (UT; n = 12), pharmacological therapy (ACE-I; n = 14, receiving quinapril), and cellular therapy (BMMNCs; n = 16, receiving BMMNCs infusion). Rats underwent to a standard echocardiogram in the acute setting and 14 days after the damage, before the sacrifice. Pro-CKs analysis (interleukin (IL)1β, IL-6, tumor necrosis factor (TNF)α was performed (multiplex proteome arrays) on blood samples obtained by direct aorta puncture before the sacrifice; a control group of 6 rats was considered as reference.</p> <p>Results</p> <p>Concerning the extension of the infarcted area as well as the LV dimensions, no differences were observed among the animal groups; treated rats had lower left atrial diameters and higher indexes of LV function. Pro-Cks were increased in infarcted-UT rats if compared with controls, and significantly reduced by BMMNCs and ACE-I ; TNFα inversely correlated with LV fractional shortening.</p> <p>Conclusion</p> <p>After myocardial infarction, both BMMNCs and ACE-I reduce the pattern of pro-Ck response, probably contributing to prevent the deterioration of LV function observed in UT rats.</p

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Locus of emotion influences psychophysiological reactions to music

    Get PDF
    It is now widely accepted that the perception of emotional expression in music can be vastly different from the feelings evoked by it. However, less understood is how the locus of emotion affects the experience of music, that is how the act of perceiving the emotion in music compares with the act of assessing the emotion induced in the listener by the music. In the current study, we compared these two emotion loci based on the psychophysiological response of 40 participants listening to 32 musical excerpts taken from movie soundtracks. Facial electromyography, skin conductance, respiration and heart rate were continuously measured while participants were required to assess either the emotion expressed by, or the emotion they felt in response to the music. Using linear mixed effects models, we found a higher mean response in psychophysiological measures for the “perceived” than the “felt” task. This result suggested that the focus on one’s self distracts from the music, leading to weaker bodily reactions during the “felt” task. In contrast, paying attention to the expression of the music and consequently to changes in timbre, loudness and harmonic progression enhances bodily reactions. This study has methodological implications for emotion induction research using psychophysiology and the conceptualization of emotion loci. Firstly, different tasks can elicit different psychophysiological responses to the same stimulus and secondly, both tasks elicit bodily responses to music. The latter finding questions the possibility of a listener taking on a purely cognitive mode when evaluating emotion expression

    MicroRNA interactome analysis predicts post-transcriptional regulation of ADRB2 and PPP3R1 in the hypercholesterolemic myocardium

    Get PDF
    Little is known about the molecular mechanism including microRNAs (miRNA) in hypercholesterolemia-induced cardiac dysfunction. We aimed to explore novel hypercholesterolemia-induced pathway alterations in the heart by an unbiased approach based on miRNA omics, target prediction and validation. With miRNA microarray we identified forty-seven upregulated and ten downregulated miRNAs in hypercholesterolemic rat hearts compared to the normocholesterolemic group. Eleven mRNAs with at least 4 interacting upregulated miRNAs were selected by a network theoretical approach, out of which 3 mRNAs (beta-2 adrenergic receptor [Adrb2], calcineurin B type 1 [Ppp3r1] and calcium/calmodulin-dependent serine protein kinase [Cask]) were validated with qRT-PCR and Western blot. In hypercholesterolemic hearts, the expression of Adrb2 mRNA was significantly decreased. ADRB2 and PPP3R1 protein were significantly downregulated in hypercholesterolemic hearts. The direct interaction of Adrb2 with upregulated miRNAs was demonstrated by luciferase reporter assay. Gene ontology analysis revealed that the majority of the predicted mRNA changes may contribute to the hypercholesterolemia-induced cardiac dysfunction. In summary, the present unbiased target prediction approach based on global cardiac miRNA expression profiling revealed for the first time in the literature that both the mRNA and protein product of Adrb2 and PPP3R1 protein are decreased in the hypercholesterolemic heart
    corecore