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Abstract 

Rationale: 3,4-Methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-

methylcathinone (methylone) are synthetic drugs found in so-called “bath salts” products.  Both 

drugs exert their effects by interacting with monoamine transporter proteins.  MDPV is a potent 

uptake blocker at transporters for dopamine and norepinephrine while methylone is a non-

selective releaser at transporters for dopamine, norepinephrine and serotonin (5-HT).   

Objectives: We hypothesized that prominent 5-HT-releasing actions of methylone would render 

this drug less reinforcing than MDPV.  

Methods: To test this hypothesis, we compared behavioral effects of MDPV and methylone 

using intravenous (i.v.) self-administration on a fixed-ratio 1 schedule in male rats. Additionally, 

neurochemical effects of the drugs were examined using in vivo microdialysis in nucleus 

accumbens, in a separate cohort of rats.   

Results: MDPV self-administration (0.03 mg/kg/inj) was acquired rapidly, and reached 40 

infusions per session, similar to the effects of cocaine (0.5 mg/kg/inj), by the end of training. By 

contrast, methylone self-administration (0.3 & 0.5 mg/kg/inj) was acquired slowly, and response 

rates only reached 20 infusions per session by the end of training.  In dose substitution studies, 

MDPV and cocaine displayed typical inverted U-shaped dose-effect functions, but methylone did 

not.  In vivo microdialysis revealed that i.v. MDPV (0.1 and 0.3 mg/kg) increased extracellular 

dopamine while i.v. methylone (1 and 3 mg/kg) increased extracellular dopamine and 5-HT.   

Conclusions: Our findings support the hypothesis that elevations in extracellular 5-HT in the 

brain can dampen positive reinforcing effects of cathinone-type drugs. Nevertheless, MDPV and 

methylone are both self-administered by rats suggesting these drugs possess significant abuse 

liability in humans.  
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Introduction 

The non-medical use of psychoactive synthetic cathinones, commonly known as “bath salts,” has 

increased worldwide in recent years (Baumann, 2014; German et al., 2014), often leading to life-

threatening medical consequences (Kesha et al., 2013; Wright et al., 2013).  Three of the most 

popular synthetic cathinones, 3,4-methylenedioxypyrovalerone (MDPV), 4-methyl-N-

methylcathinone (mephedrone) and 3,4-methylenedioxy-N-methylcathinone (methylone), have 

been classified by the United States (US) as Schedule I controlled substances (Drug Enforcement 

Administration, 2011, 2013).  The thirty-sixth meeting of the Expert Committee on Drug 

Dependence, convened by the World Health Organization, was followed by a recommendation to 

place these three substances in Schedule II of the United Nations Convention on Psychotropic 

Substances 1971 (World Health Organization, 2015).  Despite these introductions of legislative 

control, MDPV and methylone remain available in the street drug marketplace and are 

continuing to be abused in the US and elsewhere (Drug Enforcement Administration, 2014; 

Seely et al., 2013).  As a result, it is important to understand the pharmacological actions of these 

two drugs, particularly with regard to their abuse liability. 

 MDPV and methylone are both classified as synthetic cathinones, but the drugs are 

chemically distinct and their molecular mechanisms of action differ.  With respect to chemical 

structure, MDPV possesses a nitrogen-containing pyrrolidine ring and an extended α-carbon 

alkyl chain, whereas methylone does not. MDPV is an uptake blocker at transporters for 

dopamine (DAT) and norepinephrine (NET) (Baumann et al., 2013; Cameron et al., 2013; 

Eshleman et al., 2013; Simmler et al., 2013), similar to cocaine but much more potent.  

Importantly, MDPV is highly selective for DAT and NET, with little affinity for the serotonin 

transporter (SERT). By contrast, methylone acts as a non-selective substrate for DAT, NET and 

SERT, thereby causing the transporter-mediated release of all three monoamine transmitters, 
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similar to the actions of 3,4-methylenedioxymethamphetamine (MDMA) (Baumann et al., 2012; 

Eshleman et al., 2013; Simmler et al., 2013).  MDPV and methylone increase locomotor activity 

in rodents (Aarde et al., 2013; Gatch et al., 2013; Lopez-Arnau et al., 2012; Marusich et al., 

2012) and can increase body temperature, particularly after high-dose administration or at 

elevated ambient temperatures (Fantegrossi et al., 2012; Lopez-Arnau et al., 2014a, b; Kiyatkin 

et al., 2015).  Both drugs also enhance intracranial self-stimulation (Bonano et al., 2014, 

Watterson et al., 2012, 2014) and engender conditioned place preference (Karlsson et al., 2014), 

effects that are indicators of high abuse potential.  In studies that have directly compared the in 

vivo effects of MDPV and methylone, MDPV is typically 3-10 times more potent than 

methylone (Bonano et al., 2014; Gatch et al., 2013; Karlsson et al., 2014; Marusich et al., 2012; 

Kiyatkin et al., 2015). 

 The pharmacological effects of methylone might be expected to mimic those produced by 

MDMA since the two drugs share similar chemical structures and the ability to release 5-HT 

from neurons.  MDMA is self-administered by animals, but its reinforcing effects are weak when 

compared to other psychostimulants, most likely due to its stimulation of 5-HT release (De La 

Garza et al., 2007; Schenk et al., 2007; Bradbury et al., 2013).  Accumulating preclinical 

evidence shows that elevations in extracellular 5-HT in the brain can dampen locomotor and 

reinforcing effects mediated by dopaminergic stimulants (Wee and Woolverton, 2006; Baumann 

et al., 2011; Bauer et al., 2013).  The fact that MDPV has relatively specific effects on dopamine 

and norepinephrine, without affecting 5-HT systems, would lead one to predict greater self-

administration of this drug when compared to methylone.  Somewhat surprisingly, methylone 

(Watterson et al., 2012; Creehan et al., 2015) and MDPV (Aarde et al., 2013, 2015; Watterson et 

al., 2014) are both readily self-administered by rats, but methylone appears to be less potent and 

supports somewhat lower rates of responding than MDPV.  Importantly, Creehan et al. (2015) 
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reported much lower rates of responding for methylone in female rats than Watterson et al. 

(2012) reported in male rats, suggesting that there may be sex differences in responsiveness to 

the drug.  

Methodological differences across the various studies examining self-administration of 

MDPV and methylone make direct comparison of the results difficult.  For example, in studies 

investigating the reinforcing effects of MDPV in male rats (Aarde et al., 2013; Watterson et al., 

2014), subjects were first pre-trained with food prior to drug self-administration, while this was 

not the case for methylone (Watterson et al., 2012).  In addition, Creehan et al. (2015) used 

female rats to study methylone self-administration.  Here we wished to carry out a side-by-side 

comparison of MDPV and methylone self-administration in male rats, without pre-training for 

food, and under identical conditions to allow for direct comparison of reinforcing effects.  In 

addition, we used in vivo microdialysis in male rats to compare the effects of the two drugs on 

extracellular concentrations of dopamine and 5-HT in the nucleus accumbens. Based on our 

previous neurochemical findings (Baumann et al., 2012; 2013), we predicted that MDPV 

administration would increase extracellular concentrations of dopamine only, while methylone 

would increase concentrations of both dopamine and 5-HT. Given the stronger serotonergic 

effects of methylone, we hypothesized that self-administration of this drug would be less robust 

when compared to MDPV.  

 
Materials and Methods 

Subjects:  Male Sprague-Dawley rats, weighing 300-400 g at the beginning of the studies, 

were used for these experiments. They were housed under standard vivarium conditions of 

controlled temperature (22 ± 2 oC) and humidity (45 ± 5%) with food and water freely available.  

Rats were group-housed, two or three per cage, prior to surgery but single-housed thereafter.  
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Rats for self-administration studies were housed under a 12:12 h reverse light-dark cycle (lights 

on at 2200 h), whereas rats for microdialysis studies were housed under a 12:12 h normal light-

dark cycle (lights on at 0700 h).  Guidelines of the Institutional Animal Care and Use Committee 

at the National Institute on Drug Abuse (NIDA)/Intramural Research Program (IRP) and the 

Guide for the Care and Use of Laboratory Animals were followed at all times. 

 Drugs:  3,4-Methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-

methylcathinone (methylone) were synthesized in racemic form as HCl salts in our laboratories. 

Chemical and structural analysis included proton nuclear magnetic resonance, gas 

chromatography/mass spectrometry, thin layer chromatography, and melting point 

determination. All data confirmed the expected structures.  Cocaine hydrochloride (NIDA/IRP, 

Baltimore, MD), MDPV and methylone were all dissolved in sterile saline prior to 

administration. 

Self-Administration Studies:  Rats were anesthetized by a combination of 100 mg/kg 

ketamine and 10 mg/kg xylazine, (i.p.) and intravenous (i.v.) jugular catheters were implanted 

according to procedures described previously (Schindler et al., 2011).  Briefly, 3 cm of Silastic 

tubing (Dow Corning, 0.44 mm i.d., 0.9 mm o.d.) was inserted into the right jugular vein and 

connected to vinyl tubing (Dural Plastics, 0.5 mm i.d., 1.0 mm o.d.) that exited the back at the 

midscapular region, and was plugged with an obturator.  Immediately following catheter 

implantation, an incision was made posterior to the exit site of the catheter and a 20 mm nylon 

screw was inserted serving as a back mount.  A metal spring, which housed Tygon extension 

tubing connecting the fluid swivel (Instech, Plymouth  Meeting, PA) on the top of the cage to the 

i.v. catheter, was attached to this mount at the time of self-administration sessions.  This tubing 

was attached to a 10-ml syringe controlled by a motor-driven syringe pump outside the sound 

attenuation cubicle.  The pump (PHM-100, Med Associates) delivered a constant volume (0.2 



8 
 

ml/inj) of drug solution over 2 secs.  Concentration of drug was adjusted for each rat’s body 

weight to give the desired dose.  Catheters were flushed before and after each training session 

with 0.1 ml of a saline solution containing 1.25 units/ml heparin and 0.08 mg/ml gentamicin.  If 

a catheter failed during the study, a second catheter was implanted on the opposite side.  After 

the second catheter failure, the rat was removed from the study.   

Ten training chambers were used (ENV-008CT, Med Associates, St. Albans VT).  Each 

chamber was enclosed in a sound-attenuation cubicle equipped with a fan to provide ventilation 

and stable background noise (ENV-018M, Med Associates). Each chamber had a grid floor and 

two nose-poke response holes (ENV-114BM, Med Associates), one on each side of a food 

trough (not used in this study). The nose-poke holes could be illuminated from inside the hole by 

a dim yellow light.  A houselight (ENV-215M, Med Associates) was situated above the nose-

poke holes.  Experimental events were controlled by a MED-PC computer system (Med 

Associates).   

Following surgery and at least 7 days of recovery, the catheters were connected to the 

extension tubing, and the rats were placed in the training chambers every weekday.  Sessions 

began with the illumination of the houselight and the two nose-poke holes.  A nose-poke in the 

active hole was reinforced on a fixed-ratio 1 schedule with an infusion of drug, the houselight 

and nose-poke hole lights were turned off and a 20 sec timeout began.  Nose-pokes in the 

inactive hole were recorded, but had no scheduled consequence.  During the timeout, responses 

were recorded but not reinforced.  Following the timeout, the houselight and nose-poke hole 

lights were turned on and active nose-pokes were again reinforced.  Whether the right or left 

nose-poke was active was counterbalanced across subjects.  Sessions lasted for 2 h.  Initial 

acquisition doses were 0.03 mg/kg/inj for MDPV, 0.3 or 0.5 mg/kg/inj for methylone, and 0.5 

mg/kg/inj for cocaine.  The training doses of MDPV and methylone were chosen based on the 
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findings of others (e.g., Watterson et al., 2012; 2014) while the training dose of cocaine was 

based on our previous experience.  Most rats received at least 10 days of acquisition training, 

except those rats trained on 0.5 mg/kg/inj methylone where most rats received 17 days of 

training.   

Following acquisition training, dose-effect testing began for all the groups except those 

originally trained on 0.5 mg/kg/inj methylone.  The dose of each drug was varied to 3 additional 

doses.  Each dose was available for self-administration for 3 days, with results for days 2 and 3 

averaged for analysis.  Following dose-effect testing, the rats were returned to the original 

training dose.  After responding stabilized, saline was substituted for each drug and training 

continued until responding decreased.  

Microdialysis Studies:  Rats were anesthetized with sodium pentobarbital (60 mg/kg, 

i.p.), and each rat received a surgically-implanted jugular catheter and an intracranial guide 

cannula as previously described (Baumann et al., 2012).  Briefly, approximately 3 cm of Silastic 

tubing was inserted into the right jugular vein and connected to vinyl tubing that exited the back 

at the midscapular region, and was plugged with an obturator.  Immediately following catheter 

implantation, the rat was placed into a stereotaxic apparatus and an intracerebral guide cannula 

(CMA/12, Harvard Apparatus, Holliston, MA) was surgically implanted. The guide cannula was 

aimed at the nucleus accumbens, according the coordinates: 1.7 mm lateral and 1.6 mm anterior 

to bregma (reference zero), and 6.0 mm ventral to the dura surface.  Rats were allowed at least 

one week for recovery from surgery.  On the evening before an experiment, a 2 x 0.5 mm 

dialysis probe (CMA/12, Harvard Apparatus) was inserted into the guide cannula, and an 

extension tube was attached to the jugular catheter.  Each rat was placed into its own enclosure 

and connected to a tethering system.  The enclosure was equipped with photobeams to detect 

locomotor activity (Truscan, Harvard Apparatus). Probes were perfused overnight with Ringers’ 
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salt solution pumped at a flow rate of 0.6 µL/min.  On the next morning, dialysate samples were 

collected at 20-min intervals.  Samples were immediately assayed for dopamine and 5-HT by 

HPLC-ECD as described elsewhere (Baumann et al., 2011).   

Rats were randomly assigned to groups receiving either drug or saline injections.  Once 

three stable baseline samples were obtained, rats received two sequential i.v. injections of drug: 

one dose at time zero, followed by a 3-fold higher dose 60 min later.  Drugs were administered 

i.v. to mimic the self-administration route, and the low drug doses were ~3-fold greater than the 

training dose self-administered.  For MDPV, rats received 0.1 mg/kg followed by 0.3 mg/kg.  

For methylone, rats received 1.0 mg/kg followed by 3 mg/kg. Control rats received sequential 

i.v. injections of saline (1 ml/kg) according to the same schedule.  Microdialysis samples were 

collected every 20 min throughout the post-injection period for 120 min.  At the end of the 

experiments, rats were euthanized with CO2 and decapitated.  Brains were cut on a cryostat 

(CM1950, Leica Biosystems, Buffalo Grove, IL) and examined to verify placement of 

microdialysis probe tips within the nucleus accumbens.  Only those rats with active placements 

were included in data analyses.  

Data Analysis:  For self-administration studies, only responses during the reinforcement 

period were used for analysis.  Timeout responses were not included, but were generally very 

low following the first couple of days of training.  Data from the self-administration experiments 

were analyzed using a linear mixed-effects model.  For the acquisition and extinction analysis, 

day and response (active/inactive) were treated as within-subject factors.  For the dose-effect 

study, dose was treated as a within-subject factor.  Dose/hour was calculated by multiplying the 

total number of infusions by the dose/infusion and dividing by the 2 hour session time.  For 

microdialysis studies, all neurotransmitter concentrations (pg/µl) and motor activity measures 

(cm/20 min) were normalized to a percentage of control values based on three pre-injection 
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baseline samples and the corresponding 20-min activity bins. Microdialysis data were analyzed 

using two-way analysis-of-variance (treatment x time).  Post-hoc analyses were performed using 

t-tests with Bonferroni corrections. 

 

Results 

Self-administration:  Figure 1 shows acquisition data for MDPV (0.03 mg/kg/inj), 

methylone (0.3 mg/kg/inj) and cocaine (0.5 mg/kg/inj).  Both active/reinforced and inactive 

responses are shown.  Timeout responses are not included.  On the first day of training, rats took 

over 40 injections of MDPV (43.2 ± 10.2) and maintained that level of responding throughout 

training.  On the first day of training, inactive responses were high as well (29.4 ± 9.5), but 

decreased rapidly after day 1.  Statistical analysis showed a significant effect of the interaction of 

response (active/inactive) and day (F9,312 = 3.17, p < .01).  Post-hoc analysis showed that active 

and inactive responses were significantly different (solid symbols in Figure 1) for every day 

beyond day 1 (p < .001). 

 In contrast to MDPV, reinforced responses for methylone were below 20 on day 1 (14.4 

± 3.3) and slowly increased over time to a maximum of 25.5 ± 4.9 by day 10.  Inactive responses 

were similar to active responses over the first few days of training (8.5 ± 1.8 on day 1), but a 

separation between active and inactive responses did eventually develop.  Statistical analysis 

again showed a significant interaction of response (active/inactive) and day (F9,246 = 3.14, p < 

.001).  Post-hoc analysis showed that active and inactive response differed on day 7-10 (solid 

symbols, p < 0.01). 

 For cocaine, active/reinforced responses were initially similar to those of MDPV, 

averaging 32.1 ± 11.6 active responses on day 1.  Inactive responses were also high initially 

(38.0 ± 5.7 on day 2), but dropped over the ensuing days of training.    Because of the variability 
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in the inactive response data, the statistical analysis failed to show any significant effects.  When 

only active responses were compared across the 3 drugs, statistical analysis showed a significant 

effect of drug (F2,47 = 7.8, p < 0.003), but not for either the day factor or the interaction.  Post-

hoc analysis showed all three drugs differed (cocaine vs MDPV, p < 0.01, cocaine vs methylone 

and MDPV vs methylone, p < 0.001).  Active responses for MDPV were slightly, but 

consistently higher for MDPV when compared to cocaine.  Active responses for methylone were 

consistently well below those for both MDPV and cocaine. 

 Watterson et al. (2012) reported much higher levels of self-administration for methylone 

than were observed here.  At a dose of 0.5 mg/kg/inj, they reported rates of up to 80 infusions per 

2 h session by day 10 of training, and this level of responding continued throughout the 20 days 

of training.  To more closely replicate the Watterson et al. (2012) procedure, we trained a 

separate group of rats on 0.5 mg/kg/inj methylone and continued training beyond 10 days.  Due 

to catheter limitations, most rats were only able to continue training for 14-17 days.  Figure 2 

shows the results for the 0.5 mg/kg/inj group.  Over the first 10 days of training the results for 

0.5 mg/kg/inj are comparable to those for the 0.3 mg/kg/inj methylone dose (see Figure 1).  After 

10 days, there was only a small increase in the number of injections for the 0.5 mg/kg/inj group.  

Statistical analysis showed a significant interaction of response (active/inactive) and day (F16,244 

= 6.3, p < 0.0001).  Post-hoc analysis showed active and inactive responses differed on days 6, 7 

and 9-17 (solid symbols in Figure 2). 

 When saline was substituted for drug, responding decreased for MDPV, methylone, and 

cocaine (Figure 1).  Responding dropped rapidly for MDPV, but relatively slowly for cocaine.  

For methylone there was an immediate decrease in responding.  Statistical analysis showed that 

for MDPV the interaction of response (active/inactive) and day was significant (F5,80 = 3.8, p < 

.01) with post-hoc tests showing that only the difference in active/inactive responses on day 1 
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was significant (solid symbol).  For methylone, neither the main effects of response and day, nor 

the interaction were significant.  For cocaine, the main effects were both significant (day F5,76 = 

4.47, p < .01; response F1,8 = 18.14, p < .01), but the interaction was not. 

 Figure 3 shows the results for the dose-effect manipulation.  The top panel shows the 

average number of reinforced responses.  For comparison, the average number of saline 

infusions for the last day of extinction is shown for each drug.  For both MDPV and cocaine, 

results typical for stimulant drug self-administration were observed, with peak infusions 

occurring at lower doses and rates of responding decreasing with increases in dose.  However, 

for methylone responding was relatively flat across doses.  For all three drugs there was a 

significant effect of dose (MDPV F4,20 = 21.95, p < .0001; methylone F4,27 = 3.79, p < 0.05; 

cocaine F4,32  = 22.9, p < 0.0001).  The number of infusions taken were significantly above saline 

for multiple doses for both MDPV (0.003, 0.01 and 0.03 mg/kg/inj, solid symbols) and cocaine 

(0.1, 0.3 mg/kg/inj, solid symbols), but for methylone, only the 0.1 mg/kg/inj dose maintained 

infusion rates above saline (p < 0.05, solid symbol). 

The bottom panel of Figure 3 shows the average hourly intake for each drug.  For 

cocaine, the pattern of responding led to fairly steady rates of intake across doses, while for 

methylone rates of intake increased with increasing dose.  Rate of intake for MDPV increased 

most dramatically from 0.003 mg/kg/inj, a dose that did not reliably maintain responding, to 0.01 

mg/kg/inj.  Above 0.01 mg/kg/inj intake increased gradually.  Again, for all three drugs there 

was a significant effect of dose (MDPV F3,14 = 15.37, p < .0001; methylone F3,19 = 35.72, p < 

0.0001; cocaine F3,24  = 14.4, p < 0.0001).  For both MDPV and cocaine, the intake at the lowest 

dose was significantly different from the other doses (p < 0.01, open symbol), but the higher 

doses did not differ from each other.  For methylone, the 0.01 and 0.03 doses did not differ from 
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each other and the 0.1 and 0.3 doses did not differ.  All other comparisons were significant (p < 

0.01). 

Microdialysis:  Figure 4 depicts the effects of MDPV or saline injections on extracellular 

concentrations of dopamine and 5-HT in nucleus accumbens of conscious rats, along with 

corresponding locomotor activity.  MDPV significantly increased dialysate dopamine at both 

doses tested (F8,99 = 11.68, p < 0.0001), but had no effect on dialysate 5-HT (F8,99 = 0.2). The 

elevations in dopamine produced by MDPV were 2-fold and 4-fold above basal preinjection 

values after the 0.1 and 0.3 mg/kg doses, respectively.  As shown in the bottom panel of Figure 

4, MDPV markedly increased locomotion in a dose-dependent manner (F8,99 = 21.17, p < 

0.0001), and motor activation was temporally correlated with elevations in extracellular 

dopamine. Figure 5 shows the effects of methylone injections on extracellular concentrations of 

dopamine and 5-HT.  In contrast to MDPV, methylone significantly increased concentrations of 

both dopamine (F8,99 = 5.32, p < 0.0001) and 5-HT (F8,99 = 11.92, p < 0.0001), with the relative 

increases in 5-HT being much greater.  For example, the rise in dialysate 5-HT after 3.0 mg/kg 

was 8-fold above basal preinjection values, while the corresponding elevation in dialysate 

dopamine was only about 3-fold. Methylone produced a dose-related increase in locomotor 

activity (F8,99 = 12.05, p < 0.01), though this effect was smaller in magnitude when compared to 

MDPV. 

 

Discussion  

A major aim of the present study was to directly compare the reinforcing and neurochemical 

effects of the bath salts constituents MDPV and methylone.  Although these drugs are both 

classified as synthetic cathinones, they are quite different in terms of their selectivity and 

mechanism at monoamine transporters.  MDPV is a potent uptake blocker at DAT and NET with 
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minimal activity at SERT (Baumann et al., 2013; Cameron et al., 2013; Eshleman et al., 2013; 

Simmler et al., 2013), whereas methylone is a non-selective transporter substrate that evokes the 

release of dopamine, norepinephrine and 5-HT (Baumann et al., 2012; Eshelman et al., 2013; 

Simmler et al., 2013).  We hypothesized that the serotonergic effects of methylone would render 

this drug less reinforcing when compared to MDPV. It was found that rats acquired MDPV self-

administration rapidly, within the first few days of training, and the drug maintained high rates of 

responding (40 infusions per 2 h session). The acquisition of methylone, on the other hand, 

occurred slowly over the course of many days, and the number of responses (20 infusions per 2 h 

session) was much less than for MDPV. In dose-substitution studies, MDPV and cocaine gave 

typical inverted U-shaped dose-effect functions, but methylone did not. Microdialysis findings 

revealed that MDPV produces selective increases in dialysate dopamine while methylone 

increases dialysate dopamine and 5-HT, with larger effects on 5-HT.  Collectively, the present 

findings support the hypothesis that elevations in central 5-HT can dampen reinforcing effects 

mediated by mesolimbic dopamine. 

In the present study, we noted robust self-administration of MDPV from the very 

beginning of training.  High rates of drug intake were observed with clear discrimination 

between active and inactive responses by day 2 of training.  The MDPV dose-effect function was 

typical of psychomotor stimulants, with response rates peaking at 0.01 mg/kg/inj.  At higher 

doses, response rates decreased while intake increased only slightly.  The results shown here 

confirm previous reports of avid self-administration of MDPV in male rats (Aarde et al., 2013, 

2015; Watterson et al., 2014).  In terms of absolute response rates, we found that MDPV 

maintained rates comparable to cocaine (40 infusions per 2 h session), although MDPV was 

about 10-times more potent than cocaine.  The high rates of infusions for MDPV observed here 

are similar to those reported by Aarde et al. (2013), but less than those reported by Watterson et 
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al. (2014) who found rates around 60 infusions per 2 h session for an MDPV training dose of 

0.05 mg/kg/inj. We demonstrate here that rats tend to regulate their intake of MDPV and 

cocaine, with intake for both drugs not differing significantly at the 3 highest doses tested.  The 

present inverted U-shaped dose-effect functions with MDPV and cocaine are consistent with our 

previous results using cocaine as a training drug in rats (cf. Panlilio et al., 2003).  When saline 

was substituted for drug, rates of responding for both MDPV and cocaine decreased, and the 

discrimination between the active and inactive responses was lost.  One potential caveat in our 

data set is that cocaine-trained rats exhibited many more inactive responses when compared to 

MDPV-trained rats.  A close inspection of the results showed that variability for inactive 

responses in cocaine-trained rats was due primarily to certain rats that showed high levels of 

inactive responses on individual days of training, particularly day 2.  We observed that inactive 

responses were rare among the rats responding for MDPV after the first day of training. 

 In contrast to MDPV and cocaine, we found that responding for methylone was low 

initially, with little discrimination between active and inactive responses.  Responding did slowly 

increase over the course of several days, and discrimination between active and inactive 

responses eventually emerged.  However, even when the dose of methylone was increased from 

0.3 to 0.5 mg/kg/inj, and additional days of training were allowed, responding remained low 

relative to MDPV and cocaine.  When saline was substituted for methylone, responding 

immediately decreased and the discrimination between the responses was lost.  In general, less 

responding was seen for methylone in the present experiments (i.e., 20 infusions per 2 h session) 

than in a previous study using methylone at comparable training doses (i.e., up to 80 infusions 

per 2 h session) (Watterson et al., 2012).  The reason for this discrepancy is not clear since both 

studies used the same male rat strain, trained rats during the dark phase of the light cycle (i.e., 

active phase), omitted food pre-training, and had similar schedule parameters.  Watterson et al. 
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(2012) used lever press responses in their study, rather than the nose-poke responses used in our 

study, but nose-poke responding typically facilitates, rather than suppresses, training.  Watterson 

et al. did find that methylone was not as effective in maintaining responding as MDPV when 

compared across studies (Watterson et al., 2012, 2014).  Furthermore, it should be noted that a 

recent study by Creehan et al. (2015) demonstrated that female rats acquire methylone self-

administration in a slow and steady manner, over the course of two weeks of training, with 

response rates in the range of 20 infusions per 2 h session.  Thus, the recent methylone data from 

female rats reported by Creehan et al. agree closely with what we found here in male rats.  In our 

study, when the methylone dose was manipulated, little change in responding was observed, 

leading to large changes in total intake.  Watterson et al. (2012) trained separate groups of rats at 

different doses of methylone rather than manipulating dose after initial training.  They found 

clearer differences in responding between doses than observed here, even over a similar dose 

range.  Nevertheless, while responding for methylone was low in our study, self-administration 

behavior was observed, just not to the same extent as that of MDPV and cocaine.  With regard to 

potency, the present data agree with published self-administration studies in rats, which 

consistently find that methylone is about 10-times less potent than MDPV (Aarde et al., 2013, 

2015; Watterson et al., 2012, 2014). 

 The microdialysis data reported here may provide clues to the neurochemical 

mechanisms underlying differences in the behavioral effects of MDPV versus methylone. 

However, it should be noted that microdialysis experiments were carried out during the light 

phase of the circadian cycle whereas self-administration experiments were carried out during the 

dark phase.  The different timing for the neurochemical and behavioral studies represents a 

limitation to direct comparison of the results.  We found that MDPV and methylone both 

produce rapid elevations in extracellular dopamine upon i.v. administration.  In fact, the rise in 
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dialysate dopamine produced by 0.1 mg/kg MDPV was nearly identical to the rise produced by 

1.0 mg/kg methylone (i.e., 2-fold increase).  On the other hand, MDPV had no discernable effect 

on extracellular 5-HT while methylone produced large increases in 5-HT that exceeded its 

effects on dopamine.  The microdialysis data for MDPV reported here are the first to show this 

drug fails to affect extracellular concentrations of 5-HT in vivo at pharmacologically-relevant 

doses.  The microdialysis data with methylone agree with our previous findings that used lower 

doses of i.v. administered drug (i.e., 0.1 and 0.3 mg/kg i.v.) to demonstrate that methylone and 

mephedrone exhibit MDMA-like neurochemical effects in male rats (Baumann et al., 2012).  In 

the present study, MDPV and methylone both increased locomotor activity. However, MDPV 

induced much larger increases in hyperactivity than methylone, even though the drugs had 

similar effects on extracellular dopamine.  Our previous microdialysis experiments have shown 

that elevations in extracellular dopamine in the nucleus accumbens are tightly correlated with the 

extent of locomotor activity produced by stimulant drugs (Baumann et al., 2008, 2011; 

Zolkowska et al. 2009).  Thus, one interpretation of the current microdialysis and locomotor data 

is that elevations in extracellular 5-HT can reduce locomotor stimulant effects mediated by 

extracellular dopamine. Future studies could address this hypothesis by examining microdialysis 

and locomotor activity for other types of stimulant drugs in rodent models. 

In summary, a direct comparison between MDPV and methylone demonstrated that 

MDPV supports robust self-administration in rats.  Although methylone also supported self-

administration, this drug is not as potent or efficacious as MDPV, maintaining lower rates of 

intake and not showing a clear dose-effect function.  Based on the findings presented here, it is 

tempting to speculate that elevations in extracellular 5-HT produced by methylone can reduce its 

reinforcing effects in rats, but this view may be an oversimplification.  The recent article by 

Creehan et al. (2015) is noteworthy because it compared the self-administration of MDMA, 
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methylone and mephedrone in female rats.  These three “empathogen” drugs are non-selective 

transporter substrates that increase the release of dopamine, norepinephrine and 5-HT in vitro 

(Baumann et al. 2012; Eshleman et al., 2013; Simmler et al, 2013).  Importantly, the 5-HT-

releasing ability of these drugs is more prevalent than their effects on dopamine in vivo 

(Baumann et al., 2008, 2012; Kehr et al., 2011; Wright et al., 2012). Despite the shared 

mechanism of action among these drugs, Creehan et al. (2015) showed that mephedrone displays 

significantly greater reinforcing effects than either methylone or MDMA.  Such findings indicate 

that other factors in addition to 5-HT release, including drug pharmacokinetics, effects on 

noradrenergic systems, or non-transporter sites of action, must influence the self-administration 

behavior of MDMA-like drugs.  Finally, our self-administration data from rats are consistent 

with the known misuse of MDPV and methylone in humans (e.g., Johnson and Johnson, 2014), 

and suggest that MDPV is more apt to be abused in a compulsive manner due to its potent and 

selective dopaminergic effects. 
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Figure Captions 

 

Figure 1.  Acquisition and extinction of self-administration of 0.03 mg/kg/inj MDPV (top panel, 

acquisition n = 17-20, extinction n = 4-12), 0.3 mg/kg/inj methylone (middle panel, acquisition n 

= 15, extinction n = 6-9) and 0.5 mg/kg/inj cocaine (bottom panel, acquisition n = 14-16, 

extinction n = 7-9).  The first 10 days of acquisition are shown, followed by the first 6 days of 

extinction.  Active responses and inactive responses do not include timeout responses.  

Therefore, active responses are equivalent to infusions.  Filled symbols for active responses are 

significantly different from inactive on the same day.   A = acquisition, E = Extinction 

 

Figure 2.   Acquisition of self-administration of a higher dose of methylone 0.5 mg/kg/inj (n = 5-

9).  Training for the higher dose of methylone was continued beyond 10 days and the first 17 

days of acquisition is shown.  Filled symbols for active responses are significantly different from 

inactive responses on the same day.  For comparison, the results for 0.3 mg/kg/inj methylone 

from Figure 1 are shown as solid (active responses) and dashed (inactive responses) lines. 

 

Figure 3.   Dose-effect functions for infusions (top panel) and intake in Dose/Hr (bottom panel) 

is shown for MDPV (n = 4-11), methylone (n = 4-13) and cocaine (n = 7-12).  Dose was 

manipulated following initial acquisition of the self-administration response.  Solid symbols in 

the top panel indicate differences from the appropriate saline (S) point.  Solid symbols in bottom 

panel are significantly different from open symbols for same drug, but do not differ from each 

other for the same drug. 
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Figure 4.  Effects of MDPV (n = 7) or saline vehicle (N=7) on extracellular concentrations of 

dopamine (DA, top panel) and serotonin (5-HT, middle panel) in the nucleus accumbens, and on 

horizontal locomotor activity (activity, bottom panel), in conscious rats undergoing 

microdialysis.  Drugs or saline were administered i.v. at the indicated times (arrows) and doses 

(mg/kg).  *p < 0.05, **p < 0.01 = significant difference from saline (n = 6) at the corresponding 

time point. 

 

Figure 5.  Effects of methylone (n = 7) or saline vehicle (N=7) on extracellular concentrations of 

dopamine (DA, top panel) and serotonin (5-HT, middle panel) in the nucleus accumbens, and 

horizontal locomotor activity (activity, bottom panel), in conscious rats undergoing 

microdialysis.  Drugs or saline were administered i.v. at the indicated times (arrows) and doses 

(mg/kg).  *p < 0.05, **p < 0.01 = significant difference from saline (n = 6) at the corresponding 

time point. 
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