691 research outputs found

    methane concentrations and source strengths in urban locations

    Get PDF
    Higher atmospheric concentrations of methane are found in air samples from urban locations than in contemporary samples at the same latitude in remote locations. Higher concentrations of several trace chlorocarbon gases are also found in the same urban samples than in the corresponding remote samples. The “urban excess”, i.e. urban concentration minus remote concentration, is generally 1000 to 2000 times larger on a molar basis for CH4 than for CCl3F. Because almost all CCl3F is emitted in urban environments, the urban release of CH4 is estimated from the observed molar ratios to be 30 to 60 megatons per year world‐wide. The fraction of world‐wide methane release occurring in the urban environment can be estimated from the concentration ratios, urban to remote, for CH4 vs. CCl3F. About 8% to 15% of the atmospheric methane release is observed to occur in urban locations. Copyright 1984 by the American Geophysical Union

    Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008

    Get PDF
    High-resolution in situ CO2 measurements were conducted aboard the NASA DC-8 aircraft during the ARCTAS/POLARCAT field campaign, a component of the wider 2007-2008 International Polar Year activities. Data were recorded during large-scale surveys spanning the North American sub-Arctic to the North Pole from 0.04 to 12 km altitude in spring and summer of 2008. Influences on the observed CO2 concentrations were investigated using coincident CO, black carbon, CH3CN, HCN, O3, C2Cl4, and Δ14CO2 data, and the FLEXPART model. In spring, the CO2 spatial distribution from 55̊N to 90̊N was largely determined by the long-range transport of air masses laden with Asian anthropogenic pollution intermingled with Eurasian fire emissions evidenced by the greater variability in the mid-to-upper troposphere. At the receptor site, the enhancement ratios of CO2 to CO in pollution plumes ranged from 27 to 80 ppmv ppmv-1 with the highest anthropogenic content registered in plumes sampled poleward of 80̊N. In summer, the CO2 signal largely reflected emissions from lightning-ignited wildfires within the boreal forests of northern Saskatchewan juxtaposed with uptake by the terrestrial biosphere. Measurements within fresh fire plumes yielded CO2 to CO emission ratios of 4 to 16 ppmv ppmv-1 and a mean CO2 emission factor of 1698 ± 280 g kg-1 dry matter. From the 14C in CO2 content of 48 whole air samples, mean spring (46.6 ± 4.4%) and summer (51.5 ± 5%) D14CO2 values indicate a 5%seasonal difference. Although the northern midlatitudes were identified as the emissions source regions for the majority of the spring samples, depleted Δ14CO2 values were observed in <1% of the data set. Rather, ARCTAS Δ14CO2 observations (54%) revealed predominately a pattern of positive disequilibrium (1-7%) with respect to background regardless of season owing to both heterotrophic respiration and fire-induced combustion of biomass. Anomalously enriched Δ14CO2 values (101-262%) measured in emissions from Lake Athabasca and Eurasian fires speak to biomass burning as an increasingly important contributor to the mass excess in Δ14CO2 observations in a warming Arctic, representing an additional source of uncertainty in the quantification of fossil fuel CO2

    Narrow channel turbulence modeling project : final report

    Get PDF
    "March 1992."Includes bibliographical referencesFinal repor

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished

    An RxLR effector from phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus

    Get PDF
    The plant immune system is activated following the perception of exposed, essential and invariant microbial molecules that are recognised as non-self. A major component of plant immunity is the transcriptional induction of genes involved in a wide array of defence responses. In turn, adapted pathogens deliver effector proteins that act either inside or outside plant cells to manipulate host processes, often through their direct action on plant protein targets. To date, few effectors have been shown to directly manipulate transcriptional regulators of plant defence. Moreover, little is known generally about the modes of action of effectors from filamentous (fungal and oomycete) plant pathogens. We describe an effector, called Pi03192, from the late blight pathogen Phytophthora infestans, which interacts with a pair of host transcription factors at the endoplasmic reticulum (ER) inside plant cells. We show that these transcription factors are released from the ER to enter the nucleus, following pathogen perception, and are important in restricting disease. Pi03192 prevents the plant transcription factors from accumulating in the host nucleus, revealing a novel means of enhancing host susceptibility

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Functionally Redundant RXLR Effectors from <em>Phytophthora infestans</em> Act at Different Steps to Suppress Early flg22-Triggered Immunity

    Get PDF
    Genome sequences of several economically important phytopathogenic oomycetes have revealed the presence of large families of so-called RXLR effectors. Functional screens have identified RXLR effector repertoires that either compromise or induce plant defense responses. However, limited information is available about the molecular mechanisms underlying the modes of action of these effectors in planta. The perception of highly conserved pathogen- or microbe-associated molecular patterns (PAMPs/MAMPs), such as flg22, triggers converging signaling pathways recruiting MAP kinase cascades and inducing transcriptional re-programming, yielding a generic anti-microbial response. We used a highly synchronizable, pathogen-free protoplast-based assay to identify a set of RXLR effectors from Phytophthora infestans (PiRXLRs), the causal agent of potato and tomato light blight that manipulate early stages of flg22-triggered signaling. Of thirty-three tested PiRXLR effector candidates, eight, called Suppressor of early Flg22-induced Immune response (SFI), significantly suppressed flg22-dependent activation of a reporter gene under control of a typical MAMP-inducible promoter (pFRK1-Luc) in tomato protoplasts. We extended our analysis to Arabidopsis thaliana, a non-host plant species of P. infestans. From the aforementioned eight SFI effectors, three appeared to share similar functions in both Arabidopsis and tomato by suppressing transcriptional activation of flg22-induced marker genes downstream of post-translational MAP kinase activation. A further three effectors interfere with MAMP signaling at, or upstream of, the MAP kinase cascade in tomato, but not in Arabidopsis. Transient expression of the SFI effectors in Nicotiana benthamiana enhances susceptibility to P. infestans and, for the most potent effector, SFI1, nuclear localization is required for both suppression of MAMP signaling and virulence function. The present study provides a framework to decipher the molecular mechanisms underlying the manipulation of host MAMP-triggered immunity (MTI) by P. infestans and to understand the basis of host versus non-host resistance in plants towards P. infestans
    corecore