108 research outputs found

    Ipsilateral reexpansion pulmonary edema after drainage of a spontaneous pneumothorax: a case report

    Get PDF
    We report a case of ipsilateral reexpansion pulmonary edema occurring after the insertion of a chest tube in a patient with spontaneous pneumothorax. The patient received supplemental oxygen via a non-rebreather face mask to compensate for hypoxemia. 24 hours after the acute event, the patient recovered completely without residual hypoxemia. Reexpansion pulmonary edema after the insertion of a thoracic drainage for pneumothorax or pleural effusion is a rare complication with a high mortality rate up to 20%. It should be considered in case of hypoxemia following the insertion of a chest tube. The exact pathophysiology leading to this complication is not known. Risk factors for reexpansion pulmonary edema should be evaluated and considered prior to the insertion of chest tubes. Treatment is supportive

    Elevated expression of both mRNA and protein levels of IL-17A in sputum of stable Cystic Fibrosis patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>T helper 17 (Th17) cells can recruit neutrophils to inflammatory sites through production of IL-17, which induces chemokine release. IL-23 is an important inducer of IL-17 and IL-22 production. Our aim was to study the role of Th17 cells in cystic fibrosis (CF) lung disease by measuring IL-17 protein and mRNA levels and IL-22 and IL-23 mRNA in sputum of clinically stable CF patients and by comparing these levels with healthy controls.</p> <p>Methods</p> <p>Sputum induction was performed in adult CF patients outside of an exacerbation and healthy control subjects. IL-17A protein levels were measured in supernatants with cytometric bead array (CBA) and RNA was isolated and quantitative RT-PCR was performed for IL-17A, IL-22 and IL-23.</p> <p>Results</p> <p>We found significantly higher levels of IL-17A protein and mRNA levels (both: p < 0.0001) and IL-23 mRNA levels (p < 0.0001) in the sputum of CF group as compared to controls. We found very low levels of IL-22 mRNA in the CF group. The levels of IL-17 and IL-23 mRNA were higher in patients chronically infected with <it>Pseudomonas aeruginosa </it>(<it>P. aeruginosa</it>) as compared to those who were not chronically infected with <it>P. aeruginosa</it>. The presence of <it>Staphylococcus aureus </it>(<it>S. aureus</it>) on sputum did not affect the IL-17 or IL-23 levels. There was no correlation between IL-17 or IL-23 levels and FEV<sub>1 </sub>nor sputum neutrophilia.</p> <p>Conclusion</p> <p>The elevated levels of IL-17 and IL-23 might indicate that Th17 cells are implicated in the persistent neutrophil infiltration in CF lung disease and chronic infection with <it>P. aeruginosa</it>.</p

    Hydroimidazolone Modification of the Conserved Arg12 in Small Heat Shock Proteins: Studies on the Structure and Chaperone Function Using Mutant Mimics

    Get PDF
    Methylglyoxal (MGO) is an Ξ±-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of Ξ±A-crystallin increased its chaperone function. We identified MGO-modified arginine residues in Ξ±A-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12) is a conserved amino acid residue in Hsp27 as well as Ξ±A- and Ξ±B-crystallin. When treated with MGO at or near physiological concentrations (2–10 Β΅M), R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification) on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only Ξ±A-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of Ξ±A-crystallin. This mutation induced the exposure of additional client protein binding sites on Ξ±A-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in Ξ±A-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation

    The Anatomy of Memory Politics: A Formalist Analysis of Tate Britain’s β€˜Artist and Empire’ and the Struggle over Britain’s Imperial Past

    Get PDF
    In this paper, I propose a new approach for understanding the meaning of memory politics, which draws upon the archetypal literary criticism of Northrop Frye. I suggest that the four archetypes elaborated by Fryeβ€”comedy, romance, tragedy, and satireβ€”can be used as a heuristic device for interpreting the contested historical narratives that are associated with the politics of memory. I illustrate this approach through a case-study of Artists and Empire: Facing Britain’s Imperial Past, an exhibition held at Tate Britain in 2016, amidst increasing contestation over the meaning of the British Empire. In sum, I find that the exhibit narrated Britain’s imperial past as a comedy, in which a key theme was the progressive cultural mixing of the British and the people they colonized. To conclude, I discuss the implications of such a narrative for constructing an inclusive, postcolonial British identity. As an alternative, I draw on Aristotle to suggest that a tragic narrative would have been more propitious

    The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence

    Get PDF
    Trost E, Ott L, Schneider J, et al. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1): 728

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, Ξ³Ξ΄ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections

    Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices

    Get PDF
    Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied via local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ~2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of Ξ±-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing

    Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge

    Get PDF
    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking Ξ³Ξ΄ iIELs (TCRΞ΄(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of Ξ³Ξ΄ iIELs from wild type (WT) mice to TCRΞ΄(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRΞ΄(-/-) mice was shown to be restricted to Ξ³Ξ΄ iIELs expressing VΞ³7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-VΞ³7(+) Ξ³Ξ΄ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for Ξ³Ξ΄ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion
    • …
    corecore