12 research outputs found

    Timing of insemination and fertility in dairy and beef cattle receiving timed artificial insemination using sex-sorted sperm

    Get PDF
    AbstractThe objective was to evaluate the effects of timing of insemination and type of semen in cattle subjected to timed artificial insemination (TAI). In Experiment 1, 420 cyclic Jersey heifers were bred at either 54 or 60 h after P4-device removal, using either sex-sorted (2.1 × 106 sperm/straw) or non-sorted sperm (20 × 106 sperm/straw) from three sires (2 × 2 factorial design). There was an interaction (P = 0.06) between time of AI and type of semen on pregnancy per AI (P/AI, at 30 to 42 d after TAI); it was greater when sex-sorted sperm (P < 0.01) was used at 60 h (31.4%; 32/102) than at 54 h (16.2%; 17/105). In contrast, altering the timing of AI did not affect conception results with non-sorted sperm (54 h = 50.5%; 51/101 versus 60 h = 51.8%; 58/112; P = 0.95). There was an effect of sire (P < 0.01) on P/AI, but no interaction between sire and time of AI (P = 0.88). In Experiment 2, 389 suckled Bos indicus beef cows were enrolled in the same treatment groups used in Experiment 1. Sex-sorted sperm resulted in lower P/AI (41.8%; 82/196; P = 0.05) than non-sorted sperm (51.8%; 100/193). In addition, there was a tendency for greater P/AI (P = 0.11) when TAI was performed 60 h (50.8%; 99/195) versus 54 h (42.8%; 83/194) after removing the progestin implant. In Experiment 3, 339 suckled B. indicus cows were randomly assigned to receive TAI with sex-sorted sperm at 36, 48, or 60 h after P4 device removal. Ultrasonographic examinations were performed twice daily in all cows to confirm ovulation. On average, ovulation occured 71.8 ± 7.8 h after P4 removal, and greater P/AI was achieved when insemination was performed closer to ovulation. The P/AI was greatest (37.9%) for TAI performed between 0 and 12 h before ovulation, whereas P/AI was significantly less for TAI performed between 12.1 and 24 h (19.4%) or >24 h (5.8%) before ovulation. In conclusion, sex-sorted sperm resulted in a lesser P/AI than non-sorted sperm following TAI. However, improvements in P/AI with delayed time of AI were possible (Experiments 1 and 3), and seemed achievable when breeding at 60 h following progestin implant removal, compared to the standard 54 h normally used in TAI protocols

    Although it induces synchronized ovulation, hCG reduces the fertility of Santa Ines ewes submitted to TAI

    No full text
    ABSTRACT The aim of this study was to evaluate hCG treatment on ovarian response and on pregnancy rate using a 9-day oestrus synchronization protocol in Santa Ines ewes. On a random oestrus cycle day, ewes received an intravaginal progesterone device (Primer-PRŸ, Tecnopec, Brazil). Nine days later (Day 9), 30”g of d-cloprostenol (ProliseŸ, Syntex, Argentina) and 250IU of eCG (FolligonŸ, Intervet, Brazil) were administered and the progesterone device was removed. This moment, the ewes were randomly assigned on two groups: Control Group and hCG Group. In the hCG Group, the ewes received 500IU of hCG (VetecorŸ, Hertape-Calier, Spain) 24h after device removal. In the Control Group, the ewes did not receive any ovulation inductor. Control and hCG Groups ewes were inseminated 60h and 48h after device removal, respectively. There was no difference between the groups regarding the first ovulatory follicle diameter and the second ovulatory follicle. hCG Group ewes had shorter interval between device removal and ovulation (Control: 79.9±15.4h and hCG: 54.7±4.9h; P=0.001) and more synchronized ovulations. However, the treatment with hCG decreased the pregnancy rate after TAI (P=0,009). In conclusion, hCG administration improves ovulatory synchronisation, but causes a decrease in the pregnancy rate

    Although it induces synchronized ovulation, hCG reduces the fertility of Santa Ines ewes submitted to TAI

    No full text
    <div><p>ABSTRACT The aim of this study was to evaluate hCG treatment on ovarian response and on pregnancy rate using a 9-day oestrus synchronization protocol in Santa Ines ewes. On a random oestrus cycle day, ewes received an intravaginal progesterone device (Primer-PRŸ, Tecnopec, Brazil). Nine days later (Day 9), 30”g of d-cloprostenol (ProliseŸ, Syntex, Argentina) and 250IU of eCG (FolligonŸ, Intervet, Brazil) were administered and the progesterone device was removed. This moment, the ewes were randomly assigned on two groups: Control Group and hCG Group. In the hCG Group, the ewes received 500IU of hCG (VetecorŸ, Hertape-Calier, Spain) 24h after device removal. In the Control Group, the ewes did not receive any ovulation inductor. Control and hCG Groups ewes were inseminated 60h and 48h after device removal, respectively. There was no difference between the groups regarding the first ovulatory follicle diameter and the second ovulatory follicle. hCG Group ewes had shorter interval between device removal and ovulation (Control: 79.9±15.4h and hCG: 54.7±4.9h; P=0.001) and more synchronized ovulations. However, the treatment with hCG decreased the pregnancy rate after TAI (P=0,009). In conclusion, hCG administration improves ovulatory synchronisation, but causes a decrease in the pregnancy rate.</p></div
    corecore