45 research outputs found

    A note on the Serrin problem in the plane

    Get PDF
    We investigate the stability of the radial symmetry for the overdetermined Serrin problem in a planar convex set. More precisely, we prove that, whenever we properly perturb both the boundary conditions and the data, then a convex solution is “close” to a suitable paraboloid and the domain is “close” to a ball with respect to the Hausdorff metric

    IGF-IR Internalizes with Caveolin-1 and PTRF/Cavin in Hacat Cells

    Get PDF
    BACKGROUND: Insulin-like growth factor-I receptor (IGF-IR) is a tyrosine kinase receptor (RTK) associated with caveolae, invaginations of the plasma membrane that regulate vesicular transport, endocytosis and intracellular signaling. IGF-IR internalization represents a key mechanism of down-modulation of receptors number on plasma membrane. IGF-IR interacts directly with Caveolin-1 (Cav-1), the most relevant protein of caveolae. Recently it has been demonstrated that the Polymerase I and Transcript Release Factor I (PTRF/Cavin) is required for caveolae biogenesis and function. The role of Cav-1 and PTRF/Cavin in IGF-IR internalization is still to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the interaction of IGF-IR with Cav-1 and PTRF/Cavin in the presence of IGF1in human Hacat cells. We show that IGF-IR internalization triggers Cav-1 and PTRF/Cavin translocation from plasma membrane to cytosol and increases IGF-IR interaction with these proteins. In fact, Cav-1 and PTRF/Cavin co-immunoprecipitate with IGF-IR during receptor internalization. We found a different time course of co-immunoprecipitation between IGF-IR and Cav-1 compared to IGF-IR and PTRF/Cavin. Cav-1 and PTRF/Cavin silencing by siRNA differently affect surface IGF-IR levels following IGF1 treatment: Cav-1 and PTRF/Cavin silencing significantly affect IGF-IR rate of internalization, while PTRF/Cavin silencing also decreases IGF-IR plasma membrane recovery. Since Cav-1 phosphorylation could have a role in IGF-IR internalization, the mutant Cav-1Y14F lacking Tyr14 was transfected. Cav-1Y14F transfected cells showed a reduced internalization of IGF-IR compared with cells expressing wild type Cav-1. Receptor internalization was not impaired by Clathrin silencing. These findings support a critical role of caveolae in IGF-IR intracellular traveling. CONCLUSIONS/SIGNIFICANCE: These data indicate that Caveolae play a role in IGF-IR internalization. Based on these findings, Cav-1 and PTRF/Cavin could represent two relevant and distinct targets to modulate IGF-IR function

    Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells

    Get PDF
    BACKGROUND: Sulfonylureas, such as glibenclamide, are antidiabetic drugs that stimulate beta-cell insulin secretion by binding to the sulfonylureas receptors (SURs) of adenosine triphosphate-sensitive potassium channels (KATP). Glibenclamide may be also cardiotoxic, this effect being ascribed to interference with the protective function of cardiac KATP channels for which glibenclamide has high affinity. Prompted by recent evidence that glibenclamide impairs energy metabolism of renal cells, we investigated whether this drug also affects the metabolism of cardiac cells. METHODS: The cardiomyoblast cell line H9c2 was treated for 24 h with glibenclamide or metformin, a known inhibitor of the mitochondrial respiratory chain. Cell viability was evaluated by sulforodhamine B assay. ATP and AMP were measured according to the enzyme coupling method and oxygen consumption by using an amperometric electrode, while Fo-F1 ATP synthase activity assay was evaluated by chemiluminescent method. Protein expression was measured by western blot. RESULTS: Glibenclamide deregulated energy balance of H9c2 cardiomyoblasts in a way similar to that of metformin. It inhibited mitochondrial complexes I, II and III with ensuing impairment of oxygen consumption and ATP synthase activity, ATP depletion and increased AMPK phosphorylation. Furthermore, glibenclamide disrupted mitochondrial subcellular organization. The perturbation of mitochondrial energy balance was associated with enhanced anaerobic glycolysis, with increased activity of phosphofructo kinase, pyruvate kinase and lactic dehydrogenase. Interestingly, some additive effects of glibenclamide and metformin were observed. CONCLUSIONS: Glibenclamide deeply alters cell metabolism in cardiac cells by impairing mitochondrial organization and function. This may further explain the risk of cardiovascular events associated with the use of this drug, alone or in combination with metformin

    Restoration of acute insulin response in T2DM subjects 1 month after biliopancreatic diversion

    Get PDF
    objective: Biliopancreatic diversion (BPD) restores normal glucose tolerance in a few weeks in morbid obese subjects with type 2 diabetes, improving insulin sensitivity. However, there is less known about the effects of BPD on insulin secretion. We tested the early effects of BPD on insulin secretion in obese subjects with and without type 2 diabetes. Methods and Procedures: Twenty-one consecutive morbid obese subjects, 9 with type 2 diabetes (T2DM) and 12 with normal fasting glucose (NFG) were evaluated, just before and 1 month after BPD, by measuring body weight (BW), glucose, adipocitokines, homeostasis model assessment of insulin resistance (HOMA-IR), acute insulin response (AIR) to e.v. glucose and the insulinogenic index adjusted for insulin resistance ([∆I5/∆G5]/HOMA-IR). Results: Preoperatively, those with T2DM differed from those with NFG in showing higher levels of fasting glucose, reduced AIR (57.9 ± 29.5 vs. 644.9 ± 143.1 pmol/l, P < 0.01) and reduced adjusted insulinogenic index (1.0 ± 0.5 vs. 17.6 ± 3.9 1/mmol 2 , P < 0.001). One month following BPD, in both groups BW was reduced (by ~11%), but all subjects were still severely obese; HOMA-IR and leptin decreased significanlty, while high-molecular weight (HMW) adiponectin and adjusted insulinogenic index increased. In the T2DM group, fasting glucose returned to non-diabetic values. AIR did not change in the NFG group, while in the T2DM group it showed a significant increase (from 58.0 ± 29.5 to 273.8 ± 47.2 pmol/l, P < 0.01). In the T2DM group, the AIR percentage variation from baseline was significantly related to changes in fasting glucose (r = 0.70, P = 0.02), suggesting an important relationship exists between impaired AIR and hyperglycaemia. Discussion: BPD is able to restore AIR in T2DM even just 1 month after surgery. AIR restoration is associated with normalization of fasting glucose concentrations

    Discovery of a novel glucose metabolism in cancer: The role of endoplasmic reticulum beyond glycolysis and pentose phosphate shunt

    Get PDF
    Cancer metabolism is characterized by an accelerated glycolytic rate facing reduced activity of oxidative phosphorylation. This "Warburg effect" represents a standard to diagnose and monitor tumor aggressiveness with (18)F-fluorodeoxyglucose whose uptake is currently regarded as an accurate index of total glucose consumption. Studying cancer metabolic response to respiratory chain inhibition by metformin, we repeatedly observed a reduction of tracer uptake facing a marked increase in glucose consumption. This puzzling discordance brought us to discover that (18)F-fluorodeoxyglucose preferentially accumulates within endoplasmic reticulum by exploiting the catalytic function of hexose-6-phosphate-dehydrogenase. Silencing enzyme expression and activity decreased both tracer uptake and glucose consumption, caused severe energy depletion and decreased NADPH content without altering mitochondrial function. These data document the existence of an unknown glucose metabolism triggered by hexose-6-phosphate-dehydrogenase within endoplasmic reticulum of cancer cells. Besides its basic relevance, this finding can improve clinical cancer diagnosis and might represent potential target for therapy

    Polygenic risk scores and breast and epithelial ovarian cancer risks for carriers of BRCA1 and BRCA2 pathogenic variants

    Get PDF
    Purpose We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks forBRCA1andBRCA2pathogenic variant carriers. Methods Retrospective cohort data on 18,935BRCA1and 12,339BRCA2female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. Results The ER-negative PRS showed the strongest association with BC risk forBRCA1carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33],P = 3x10(-72)). ForBRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36],P = 7x10(-50)). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk forBRCA1(HR = 1.32 [95% CI 1.25-1.40],P = 3x10(-22)) andBRCA2(HR = 1.44 [95% CI 1.30-1.60],P = 4x10(-12)) carriers. The associations in the prospective cohort were similar. Conclusion Population-based PRS are strongly associated with BC and EOC risks forBRCA1/2carriers and predict substantial absolute risk differences for women at PRS distribution extremes.Peer reviewe

    A note on the Serrin problem in the plane

    Get PDF
    We investigate the stability of the radial symmetry for the overdetermined Serrin problem in a planar convex set. More precisely, we prove that, whenever we properly perturb both the boundary conditions and the data, then a convex solution is “close” to a suitable paraboloid and the domain is “close” to a ball with respect to the Hausdorff metric
    corecore