134 research outputs found
Superpotential de-sequestering in string models
Non-perturbative superpotential cross-couplings between visible sector matter
and K\"ahler moduli can lead to significant flavour-changing neutral currents
in compactifications of type IIB string theory. Here, we compute corrections to
Yukawa couplings in orbifold models with chiral matter localised on D3-branes
and non-perturbative effects on distant D7-branes. By evaluating a threshold
correction to the D7-brane gauge coupling, we determine conditions under which
the non-perturbative corrections to the Yukawa couplings appear. The flavour
structure of the induced Yukawa coupling generically fails to be aligned with
the tree-flavour structure. We check our results by also evaluating a
correlation function of two D7-brane gauginos and a D3-brane Yukawa coupling.
Finally, by calculating a string amplitude between n hidden scalars and visible
matter we show how non-vanishing vacuum expectation values of distant D7-brane
scalars, if present, may correct visible Yukawa couplings with a flavour
structure that differs from the tree-level flavour structure.Comment: 37 pages + appendices, 8 figure
Expansion of a specific plasmodium falciparum PfMDR1 Haplotype in southeast Asia with increased substrate transport
Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.IMPORTANCE Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms.This work was funded by Portuguese National funds through the Foundation for Science and Technology (FCT) (project UIDB/50026/2020 and UIDP/50026/2020; fellowships PD/BD/127826/2016 to C.C., SFRH/BD/129769/2017 to M.S., SFRH/BD/145427/2019 to V.B., SFRH/BD/131540/2017 to R.S.P., and IF/00143/2015/CP1294/CT0001 to P.E.F. and contract funding to M.I.V. provided through DL 57/2016 [CRP]); by the projects NORTE-01-0145-FEDER-000013, NORTE-01-0145-FEDER-000023, and NORTE 01-0145-FEDER-028178, supported by Norte Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the Euro pean Regional Development Fund (ERDF); by the Institute Merieux through “Starting” Mérieux Research Grant 2016 to M.I.V.; by the ESCMID to P.E.F. and by the NIH R01 AI109023 and R37AI50234 to D.A.F.info:eu-repo/semantics/publishedVersio
Exclusive Photoproduction of the Cascade (Xi) Hyperons
We report on the first measurement of exclusive Xi-(1321) hyperon
photoproduction in gamma p --> K+ K+ Xi- for 3.2 < E(gamma) < 3.9 GeV. The
final state is identified by the missing mass in p(gamma,K+ K+)X measured with
the CLAS detector at Jefferson Laboratory. We have detected a significant
number of the ground-state Xi-(1321)1/2+, and have estimated the total cross
section for its production. We have also observed the first excited state
Xi-(1530)3/2+. Photoproduction provides a copious source of Xi's. We discuss
the possibilities of a search for the recently proposed Xi5-- and Xi5+
pentaquarks.Comment: submitted to Phys. Rev.
New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum
Background:
The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs.
Methods:
A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay.
Results:
The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3–71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration.
Conclusion:
The investigated, trioxolane–tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.info:eu-repo/semantics/publishedVersio
Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance
Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions
Potential range of impact of an ecological trap network: the case of timber stacks and the Rosalia longicorn
Although the negative impact of timber stacks on populations of saproxylic beetles is a well-known phenomenon, there is
relatively little data concerning the scale of this impact and its spatial aspect. Beech timber stored in the vicinity of the forest
can act as an ecological trap for the Rosalia longicorn (Rosalia alpina), so in this study we have attempted to determine the
spatial range of the impact of a network of timber stacks. Timber stacks in the species’ range in the study area were listed
and monitored during the adult emergence period in 2014–2016. Based on published data relating to the species’ dispersal
capabilities, buffers of four radii (500, 1000, 1600, 3000 m) were delineated around the stacks and the calculated ranges of
potential impact. The results show that the percentage of currently known localities of the Rosalia longicorn impacted by
stacks varies from 19.7 to 81.6%, depending on the assumed impact radius. The percentage of forest influenced by timber
stacks was 77% for the largest-radius buffer. The overall impact of the ecological trap network is accelerated by fragmentation
of the impact-free area. It was also found that forests situated close to the timber stacks where the Rosalia longicorn was
recorded were older and more homogeneous in age and species composition than those around stacks where the species was
absent. Such results suggest that timber stacks act as an ecological trap in the source area of the local population
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes.This work was funded in part by the National Institutes of Health (R01 AI50234, AI124678 and AI109023) and a Burroughs Wellcome Fund Investigator in Pathogenesis of Infectious Diseases award to D.A.F. This research also received funding from the Portuguese Fundacao para a Ciencia e Tecnologia (FCT), cofunded by Programa Operacional Regional do Norte (ON.2-O Novo Norte); from the Quadro de Referencia Estrategico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER) and from the Projeto Estrategico - LA 26 - 2013-2014 (PEst-C/SAU/LA0026/2013). M.I.V. is the recipient of a postdoctoral fellowship from FCT/Ministerio da Ciencia e Ensino Superior, Portugal-MCES (SFRH/BPD/76614/2011). A.M.L. was supported by an Australian National Health and Medical Research Council (NHMRC) Overseas Biomedical Fellowship (585519). R.E.M. was supported by an NHMRC RD Wright Biomedical Fellowship (1053082). A.C.U. was supported by an Irving scholarship from Columbia University. We thank Dr Andrea Ecker for her help with plasmid design and Pedro Ferreira for his expert help with Fig. 6.info:eu-repo/semantics/publishedVersio
Computer-based technology and student engagement: a critical review of the literature
Computer-based technology has infiltrated many aspects of life and industry, yet there is little understanding of how it can be used to promote student engagement, a concept receiving strong attention in higher education due to its association with a number of positive academic outcomes. The purpose of this article is to present a critical review of the literature from the past 5 years related to how web-conferencing software, blogs, wikis, social networking sites (Facebook and Twitter), and digital games influence student engagement. We prefaced the findings with a substantive overview of student engagement definitions and indicators, which revealed three types of engagement (behavioral, emotional, and cognitive) that informed how we classified articles. Our findings suggest that digital games provide the most far-reaching influence across different types of student engagement, followed by web-conferencing and Facebook. Findings regarding wikis, blogs, and Twitter are less conclusive and significantly limited in number of studies conducted within the past 5 years. Overall, the findings provide preliminary support that computer-based technology influences student engagement, however, additional research is needed to confirm and build on these findings. We conclude the article by providing a list of recommendations for practice, with the intent of increasing understanding of how computer-based technology may be purposefully implemented to achieve the greatest gains in student engagement. © 2017, The Author(s)
Chemical genetics strategies for identification of molecular targets
Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples
of molecular targets identified with these approaches
- …