106 research outputs found

    Place-of-residence errors on death certificates for two contiguous U. S. counties

    Get PDF
    BACKGROUND: Based on death certificate data, the Texas Department of Health Bureau of Vital Statistics calculates age adjusted all-cause mortality rates for each Texas county yearly. In 1998 the calculated rates for two adjacent Texas counties was disparate. These counties contain one city (Amarillo) and are identical in size. This study examined the accuracy of recorded county of residence for deaths in the two counties in 1998. In our jurisdiction, the county of residence is assigned by funeral homes. METHODS: A random sample of 20% of death certificates was selected. The accuracy of the county of residence was verified by using a large area map, Tax Appraisal District records, and U.S. Census Bureau databases. Inaccuracies in recording the county or zip code of residence was recorded. RESULTS: Eighteen of 354 (5.4%) death certificates recorded the incorrect county and 21 of 354 (5.9%) of death certificates recorded the zip code improperly. There was a 14.4% county recording error rate for one county compared to a 0.82% for the other county. The zip code error rate was similar for the two counties (5.9% vs. 5.8%). Of the county errors, 83% occurred for addresses within a zip code that contained addresses in both counties. CONCLUSION: This study demonstrated a large error rate (14%) in recording county of residence for deaths in one county. A similar rate was not seen in an adjacent county. This led to significant miscalculation of mortality rates for two counties. We believe that errors may have arisen in part from use of internet programs by funeral homes to assign the county of residence. With some of these programs, the county is determined by zip code, and when a zip code straddles two counties, the program automatically assigns the county whose name appears first in the alphabet. This type of error could be avoided if funeral homes determined the county of residence from Tax Appraisal District or Census Bureau records, both of which are available on the internet. This type of error could also be avoided if vital statistics offices verified the county and zip code of residence using official sources

    Gene therapy restores dopamine transporter expression and ameliorates pathology in iPSC and mouse models of infantile parkinsonism

    Get PDF
    Most inherited neurodegenerative disorders are incurable, and often only palliative treatment is available. Precision medicine has great potential to address this unmet clinical need. We explored this paradigm in dopamine transporter deficiency syndrome (DTDS), caused by biallelic loss-of-function mutations in SLC6A3, encoding the dopamine transporter (DAT). Patients present with early infantile hyperkinesia, severe progressive childhood parkinsonism, and raised cerebrospinal fluid dopamine metabolites. The absence of effective treatments and relentless disease course frequently leads to death in childhood. Using patient-derived induced pluripotent stem cells (iPSCs), we generated a midbrain dopaminergic (mDA) neuron model of DTDS that exhibited marked impairment of DAT activity, apoptotic neurodegeneration associated with TNFα-mediated inflammation, and dopamine toxicity. Partial restoration of DAT activity by the pharmacochaperone pifithrin-μ was mutation-specific. In contrast, lentiviral gene transfer of wild-type human SLC6A3 complementary DNA restored DAT activity and prevented neurodegeneration in all patient-derived mDA lines. To progress toward clinical translation, we used the knockout mouse model of DTDS that recapitulates human disease, exhibiting parkinsonism features, including tremor, bradykinesia, and premature death. Neonatal intracerebroventricular injection of human SLC6A3 using an adeno-associated virus (AAV) vector provided neuronal expression of human DAT, which ameliorated motor phenotype, life span, and neuronal survival in the substantia nigra and striatum, although off-target neurotoxic effects were seen at higher dosage. These were avoided with stereotactic delivery of AAV2.SLC6A3 gene therapy targeted to the midbrain of adult knockout mice, which rescued both motor phenotype and neurodegeneration, suggesting that targeted AAV gene therapy might be effective for patients with DTDS

    The development of an occupational therapy intervention for adults with a diagnosed psychotic disorder following discharge from hospital

    Get PDF
    Background: A deterioration in mental health and admission to an acute mental health unit can result in skill loss and decreased participation in daily life. Furthermore, discharge from hospital is associated with high risks of social isolation and suicide. This intervention development study aims to describe the rationale, methods and processes of developing an intervention for adults with a diagnosed psychotic disorder following discharge from hospital. The intervention aims to increase participation in self-care and leisure, wellbeing and quality of life and reduce crisis service use. Methods: The United Kingdom Medical Research Council framework for the development of complex interventions was used to guide the process of developing the intervention to ensure the developed intervention is empirically justifiable and evidence based. The development involved a systematic and literature reviews and focus groups with people with psychosis and clinical staff to understand the problems the intervention should address and approaches to resolving these. Results: A manualised four-month intervention named Graduating Living skills Outside the Ward (GLOW) was developed for use by occupational therapists for people with a diagnosed psychotic disorder following discharge from hospital. The one-to-one stepped intensity intervention is of four months in duration and takes place in the person’s home and in community locations. The intervention aims to increase occupational performance of domestic and personal self-care, leisure and some productive roles. Conclusions: The intervention developed in this study has potential to improve the efficiency of community mental health services following discharge from hospital as it is evidence-based, time-limited and manualised and aims to reduce hospital admissions and crisis service use. The intervention will be tested to assess its clinical 41 and cost effectiveness in a randomised controlled trial

    A Kinome RNAi Screen Identified AMPK as Promoting Poxvirus Entry through the Control of Actin Dynamics

    Get PDF
    Poxviruses include medically important human pathogens, yet little is known about the specific cellular factors essential for their replication. To identify genes essential for poxvirus infection, we used high-throughput RNA interference to screen the Drosophila kinome for factors required for vaccinia infection. We identified seven genes including the three subunits of AMPK as promoting vaccinia infection. AMPK not only facilitated infection in insect cells, but also in mammalian cells. Moreover, we found that AMPK is required for macropinocytosis, a major endocytic entry pathway for vaccinia. Furthermore, we show that AMPK contributes to other virus-independent actin-dependent processes including lamellipodia formation and wound healing, independent of the known AMPK activators LKB1 and CaMKK. Therefore, AMPK plays a highly conserved role in poxvirus infection and actin dynamics independent of its role as an energy regulator

    Nuclear expression of Rac1 in cervical premalignant lesions and cervical cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Abnormal expression of Rho-GTPases has been reported in several human cancers. However, the expression of these proteins in cervical cancer has been poorly investigated. In this study we analyzed the expression of the GTPases Rac1, RhoA, Cdc42, and the Rho-GEFs, Tiam1 and beta-Pix, in cervical pre-malignant lesions and cervical cancer cell lines.</p> <p>Methods</p> <p>Protein expression was analyzed by immunochemistry on 102 cervical paraffin-embedded biopsies: 20 without Squamous Intraepithelial Lesions (SIL), 51 Low- grade SIL, and 31 High-grade SIL; and in cervical cancer cell lines C33A and SiHa, and non-tumorigenic HaCat cells. Nuclear localization of Rac1 in HaCat, C33A and SiHa cells was assessed by cellular fractionation and Western blotting, in the presence or not of a chemical Rac1 inhibitor (NSC23766).</p> <p>Results</p> <p>Immunoreacivity for Rac1, RhoA, Tiam1 and beta-Pix was stronger in L-SIL and H-SIL, compared to samples without SIL, and it was significantly associated with the histological diagnosis. Nuclear expression of Rac1 was observed in 52.9% L-SIL and 48.4% H-SIL, but not in samples without SIL. Rac1 was found in the nucleus of C33A and SiHa cells but not in HaCat cells. Chemical inhibition of Rac1 resulted in reduced cell proliferation in HaCat, C33A and SiHa cells.</p> <p>Conclusion</p> <p>Rac1 is expressed in the nucleus of epithelial cells in SILs and cervical cancer cell lines, and chemical inhibition of Rac1 reduces cellular proliferation. Further studies are needed to better understand the role of Rho-GTPases in cervical cancer progression.</p

    Weight change during chemotherapy changes the prognosis in non metastatic breast cancer for the worse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weight change during chemotherapy is reported to be associated with a worse prognosis in breast cancer patients, both with weight gain and weight loss. However, most studies were conducted prior to the common use of anthracycline-base chemotherapy and on North American populations with a mean BMI classified as overweight. Our study was aimed to evaluate the prognostic value of weight change during anthracycline-based chemotherapy on non metastatic breast cancer (European population) with a long term follow-up.</p> <p>Methods</p> <p>Patients included 111 women diagnosed with early stage breast cancer and locally advanced breast cancer who have been treated by anthracycline-based chemotherapy regimen between 1976 and 1989. The relative percent weight variation (WV) between baseline and postchemotherapy treatment was calculated and categorized into either weight change (WV > 5%) or stable (WV < 5%). The median follow-up was 20.4 years [19.4 - 27.6]. Cox proportional hazard models were used to evaluate any potential association of weight change and known prognostic factors with the time to recurrence and overall survival.</p> <p>Results</p> <p>Baseline BMI was 24.4 kg/m2 [17.1 - 40.5]. During chemotherapy treatment, 31% of patients presented a notable weight variation which was greater than 5% of their initial weight.</p> <p>In multivariate analyses, weight change (> 5%) was positively associated with an increased risk of both recurrence (RR 2.28; 95% CI: 1.29-4.03) and death (RR 2.11; 95% CI: 1.21-3.66).</p> <p>Conclusions</p> <p>Our results suggest that weight change during breast-cancer chemotherapy treatment may be related to poorer prognosis with higher reccurence and higher mortality in comparison to women who maintained their weight.</p

    XMeis3 Is Necessary for Mesodermal Hox Gene Expression and Function

    Get PDF
    Hox transcription factors provide positional information during patterning of the anteroposterior axis. Hox transcription factors can co-operatively bind with PBC-class co-factors, enhancing specificity and affinity for their appropriate binding sites. The nuclear localisation of these co-factors is regulated by the Meis-class of homeodomain proteins. During development of the zebrafish hindbrain, Meis3 has previously been shown to synergise with Hoxb1 in the autoregulation of Hoxb1. In Xenopus XMeis3 posteriorises the embryo upon ectopic expression. Recently, an early temporally collinear expression sequence of Hox genes was detected in Xenopus gastrula mesoderm (see intro. P3). There is evidence that this sequence sets up the embryo's later axial Hox expression pattern by time-space translation. We investigated whether XMeis3 is involved in regulation of this early mesodermal Hox gene expression. Here, we present evidence that XMeis3 is necessary for expression of Hoxd1, Hoxb4 and Hoxc6 in mesoderm during gastrulation. In addition, we show that XMeis3 function is necessary for the progression of gastrulation. Finally, we present evidence for synergy between XMeis3 and Hoxd1 in Hoxd1 autoregulation in mesoderm during gastrulation

    Rgnef (p190RhoGEF) Knockout Inhibits RhoA Activity, Focal Adhesion Establishment, and Cell Motility Downstream of Integrins

    Get PDF
    Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility.Rgnef exon 24 floxed mice (Rgnef(flox)) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous Rgnef(WT/flox) (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnef(flox/flox) (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnef(flox/flox) (Cre+) (Rgnef-/-) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef-/- MEF phenotypes were rescued by epitope-tagged Rgnef re-expression.Rgnef-/- MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration

    ODZ1 allows glioblastoma to sustain invasiveness through a Myc-dependent transcriptional upregulation of RhoA

    Get PDF
    Long-term survival remains low for most patients with glioblastoma (GBM), which reveals the need for markers of disease outcome and novel therapeutic targets. We describe that ODZ1 (also known as TENM1), a type II transmembrane protein involved in fetal brain development, plays a crucial role in the invasion of GBM cells. Differentiation of glioblastoma stem-like cells drives the nuclear translocation of an intracellular fragment of ODZ1 through proteolytic cleavage by signal peptide peptidase-like 2a. The intracellular fragment of ODZ1 promotes cytoskeletal remodelling of GBM cells and invasion of the surrounding environment both in vitro and in vivo. Absence of ODZ1 by gene deletion or downregulation of ODZ1 by small interfering RNAs drastically reduces the invasive capacity of GBM cells. This activity is mediated by an ODZ1-triggered transcriptional pathway, through the E-box binding Myc protein, that promotes the expression and activation of Ras homolog family member A (RhoA) and subsequent activation of Rho-associated, coiled-coil containing protein kinase (ROCK). Overexpression of ODZ1 in GBM cells reduced survival of xenografted mice. Consistently, analysis of 122 GBM tumour samples revealed that the number of ODZ1-positive cells inversely correlated with overall and progression-free survival. Our findings establish a novel marker of invading GBM cells and consequently a potential marker of disease progression and a therapeutic target in GBM

    RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    Get PDF
    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development
    • …
    corecore