337 research outputs found

    Cancer risks among BRCA1 and BRCA2 mutation carriers

    Get PDF
    BRCA1 and BRCA2 mutations increase breast and ovarian cancer risks substantially enough to warrant risk reduction surgery, despite variable risk estimates. Underlying this variability are methodological issues, and also complex genetic and nongenetic effects. Although many modifying factors are unidentified, known factors can already be incorporated in individualised risk prediction

    Variation in breast cancer risk in BRCA1 and BRCA2 mutation carriers

    Get PDF
    Genetic testing for BRCA1 and BRCA2 (BRCA1/2) mutations can provide important information for women who are concerned about their breast and ovarian cancer risks and need to make relevant prevention and medical management decisions. However, lifetime risks of breast cancer in individual BRCA1/2 mutation carriers have been confusing to apply in clinical decision-making. Published risk estimates vary significantly and are very dependent on the characteristics of the population under study. Recently, Begg and colleagues estimated cancer risks in a population-based study of BRCA1/2 mutation carriers. Here, we discuss the clinical decision-making implications of this research in the context of risk factors that may influence risk estimates in BRCA1/2 mutation carriers

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104)

    Get PDF
    BACKGROUND: Multiple farnesylated proteins are involved in signal transduction in cancer. Farnesyltransferase inhibitors (FTIs) have been developed as a strategy to inhibit the function of these proteins. As FTIs inhibit proliferation of melanoma cell lines, we undertook a study to assess the impact of a FTI in advanced melanoma. As farnesylated proteins are also important for T cell activation, measurement of effects on T cell function was also pursued. METHODS: A 3-stage trial design was developed with a maximum of 40 patients and early stopping if there were no responders in the first 14, or fewer than 2 responders in the first 28 patients. Eligibility included performance status of 0–1, no prior chemotherapy, at most 1 prior immunotherapy, no brain metastases, and presence of at least 2 cutaneous lesions amenable to biopsy. R115777 was administered twice per day for 21 days of a 28-day cycle. Patients were evaluated every 2 cycles by RECIST. Blood and tumor were analyzed pre-treatment and during week 7. RESULTS: Fourteen patients were enrolled. Two patients had grade 3 toxicities, which included myelosuppression, nausea/vomiting, elevated BUN, and anorexia. There were no clinical responses. All patients analyzed showed potent inhibition of FT activity (85-98%) in tumor tissue; inhibition of phosphorylated ERK and Akt was also observed. T cells showed evidence of FT inhibition and diminished IFN-γ production. CONCLUSIONS: Despite potent target inhibition, R115777 showed no evidence of clinical activity in this cohort of melanoma patients. Inhibition of T cell function by FTIs has potential clinical implications. Clinicaltrials.gov number NCT0006012

    Redundant Mechanisms for Regulation of Midline Crossing in Drosophila

    Get PDF
    During development, all neurons have to decide on whether to cross the longitudinal midline to project on the contralateral side of the body. In vertebrates and invertebrates regulation of crossing is achieved by interfering with Robo signalling either through sorting and degradation of the receptor, in flies, or through silencing of its repulsive activity, in vertebrates. Here I show that in Drosophila a second mechanism of regulation exists that is independent from sorting. Using in vitro and in vivo assays I mapped the region of Robo that is sufficient and required for its interaction with Comm, its sorting receptor. By modifying that region, I generated new forms of Robo that are insensitive to Comm sorting in vitro and in vivo, yet still able to normally translate repulsive activity in vivo. Using gene targeting by homologous recombination I created new conditional alleles of robo that are sorting defective (roboSD). Surprisingly, expression of these modified proteins results in phenotypically normal flies, unveiling a sorting independent mechanism of regulation

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Robo2-Slit1 dependent cell-cell interactions mediate assembly of the trigeminal ganglion

    Get PDF
    Vertebrate cranial sensory ganglia, responsible for sensation of touch, taste and pain in the face and viscera, are composed of both ectodermal placode and neural crest cells. The cellular and molecular interactions allowing generation of complex ganglia remain unknown. Here, we show that proper formation of the trigeminal ganglion, the largest of the cranial ganglia, relies on reciprocal interactions between placode and neural crest cells in chick, as removal of either population resulted in severe defects. We demonstrate that ingressing placode cells express the Robo2 receptor and early migrating cranial neural crest cells express its cognate ligand Slit1. Perturbation of this receptor-ligand interaction by blocking Robo2 function or depleting either Robo2 or Slit1 using RNA interference disrupted proper ganglion formation. The resultant disorganization mimics the effects of neural crest ablation. Thus, our data reveal a novel and essential role for Robo2-Slit1 signaling in mediating neural crest–placode interactions during trigeminal gangliogenesis

    Rapid KRAS, EGFR, BRAF and PIK3CA Mutation Analysis of Fine Needle Aspirates from Non-Small-Cell Lung Cancer Using Allele-Specific qPCR

    Get PDF
    Endobronchial Ultrasound Guided Transbronchial Needle Aspiration (EBUS-TBNA) and Trans-esophageal Ultrasound Scanning with Fine Needle Aspiration (EUS-FNA) are important, novel techniques for the diagnosis and staging of non-small cell lung cancer (NSCLC) that have been incorporated into lung cancer staging guidelines. To guide and optimize treatment decisions, especially for NSCLC patients in stage III and IV, EGFR and KRAS mutation status is often required. The concordance rate of the mutation analysis between these cytological aspirates and histological samples obtained by surgical staging is unknown. Therefore, we studied the extent to which allele-specific quantitative real-time PCR with hydrolysis probes could be reliably performed on EBUS and EUS fine needle aspirates by comparing the results with histological material from the same patient. We analyzed a series of 43 NSCLC patients for whom cytological and histological material was available. We demonstrated that these standard molecular techniques can be accurately applied on fine needle cytological aspirates from NSCLC patients. Importantly, we show that all mutations detected in the histological material of primary tumor were also identified in the cytological samples. We conclude that molecular profiling can be reliably performed on fine needle cytology aspirates from NSCLC patients
    • …
    corecore