137 research outputs found

    On topological properties of vacuum defects in lattice Yang-Mills theories

    Get PDF
    We study correlations between low-lying modes of the overlap Dirac operator and vacuum defects, center vortices and three-dimensional volumes, in lattice SU(2) gluodynamics. The low-lying modes are apparently sensitive to topological properties of the underlying gluon field configurations while the vacuum defects are crucial for the confinement. We find distinct positive correlation in both cases. In case of vortices the correlation is stronger

    Modified Gravity via Spontaneous Symmetry Breaking

    Full text link
    We construct effective field theories in which gravity is modified via spontaneous breaking of local Lorentz invariance. This is a gravitational analogue of the Higgs mechanism. These theories possess additional graviton modes and modified dispersion relations. They are manifestly well-behaved in the UV and free of discontinuities of the van Dam-Veltman-Zakharov type, ensuring compatibility with standard tests of gravity. They may have important phenomenological effects on large distance scales, offering an alternative to dark energy. For the case in which the symmetry is broken by a vector field with the wrong sign mass term, we identify four massless graviton modes (all with positive-definite norm for a suitable choice of a parameter) and show the absence of the discontinuity.Comment: 5 pages; revised versio

    Quadrupole deformation of deuterons and final state interaction in 2H⃗(e,eâ€Čp)^2 \vec H (e,e'p) scattering on tensor polarized deuterons at CEBAF energies

    Full text link
    The strength of final state interaction (FSI) between struck proton and spectator neutron in 2H⃗(e,eâ€Čp)^2\vec{H}(e,e'p) scattering depends on the alignment of the deuteron. We study the resulting FSI effects in the tensor analyzing power in detail and find substantial FSI effects starting at still low missing momentum p_m \gsim 0.9 fm^{-1}. At larger p_m \gsim 1.5 fm^{-1}, FSI completely dominates both missing momentum distribution and tensor analyzing power. We find that to a large extent FSI masks the sensitivity of the tensor analyzing power to models of the deuteron wave function. For the transversely polarized deuterons the FSI induced forward-backward asymmetry of the missing momentum distribution is shown to have a node at precisely the same value of pmp_m as the PWIA missing momentum distribution. The position of this node is not affected by FSI and can be a tool to distinguish experimentally between different models for the deuteron wave function.Comment: 24 pages, figures available from the authors on reques

    f(R)f(R) gravity constrained by PPN parameters and stochastic background of gravitational waves

    Full text link
    We analyze seven different viable f(R)f(R)-gravities towards the Solar System tests and stochastic gravitational waves background. The aim is to achieve experimental bounds for the theory at local and cosmological scales in order to select models capable of addressing the accelerating cosmological expansion without cosmological constant but evading the weak field constraints. Beside large scale structure and galactic dynamics, these bounds can be considered complimentary in order to select self-consistent theories of gravity working at the infrared limit. It is demonstrated that seven viable f(R)f(R)-gravities under consideration not only satisfy the local tests, but additionally, pass the above PPN-and stochastic gravitational waves bounds for large classes of parameters.Comment: 23 pages, 8 figure

    Interplay of structural and electronic phase separation in single crystalline La(2)CuO(4.05) studied by neutron and Raman scattering

    Full text link
    We report a neutron and Raman scattering study of a single-crystal of La(2)CuO(4.05) prepared by high temperature electrochemical oxidation. Elastic neutron scattering measurements show the presence of two phases, corresponding to the two edges of the first miscibility gap, all the way up to 300 K. An additional oxygen redistribution, driven by electronic energies, is identified at 250 K in Raman scattering (RS) experiments by the simultaneous onset of two-phonon and two-magnon scattering, which are fingerprints of the insulating phase. Elastic neutron scattering measurements show directly an antiferromagnetic ordering below a N\'eel temperature of T_N =210K. The opening of the superconducting gap manifests itself as a redistribution of electronic Raman scattering below the superconducting transition temperature, T_c = 24K. A pronounced temperature-dependent suppression of the intensity of the (100) magnetic Bragg peak has been detected below T_c. We ascribe this phenomenon to a change of relative volume fraction of superconducting and antiferromagnetic phases with decreasing temperature caused by a form of a superconducting proximity effect.Comment: 9 pages, including 9 eps figures, submitted to PR

    Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Get PDF
    We report on progress in growth and applications of submonolayer (SML) quantum dots (QDs) in high-speed vertical-cavity surface-emitting lasers (VCSELs). SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 ÎŒm range vertical-cavity surface-emitting lasers (VCSELs) is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∌30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission

    Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES
    • 

    corecore