97 research outputs found
Challenging SO(10) SUSY GUTs with family symmetries through FCNC processes
We perform a detailed analysis of the SO(10) SUSY GUT model with D3 family
symmetry of Dermisek and Raby (DR). The model is specified in terms of 24
parameters and predicts, as a function of them, the whole MSSM set of
parameters at low energy scales. Concerning the SM subset of such parameters,
the model is able to give a satisfactory description of the quark and lepton
masses, of the PMNS matrix and of the CKM matrix. We perform a global fit to
the model, including flavour changing neutral current (FCNC) processes Bs -->
mu+ mu-, B --> Xs gamma, B --> Xs l+ l- and the B(d,s) - bar B(d,s) mass
differences Delta M(d,s) as well as the flavour changing (FC) process B+ -->
tau+ nu. These observables provide at present the most sensitive probe of the
SUSY mass spectrum and couplings predicted by the model. Our analysis
demonstrates that the simultaneous description of the FC observables in
question represents a serious challenge for the DR model, unless the masses of
the scalars are moved to regions which are problematic from the point of view
of naturalness and probably beyond the reach of the LHC. We emphasize that this
problem could be a general feature of SUSY GUT models with third generation
Yukawa unification and weak-scale minimal flavour violation.Comment: 1 + 37 pages, 5 figures, 11 tables. v3: minor typos fixed. Matches
JHEP published versio
Evidence of Color Coherence Effects in W+jets Events from ppbar Collisions at sqrt(s) = 1.8 TeV
We report the results of a study of color coherence effects in ppbar
collisions based on data collected by the D0 detector during the 1994-1995 run
of the Fermilab Tevatron Collider, at a center of mass energy sqrt(s) = 1.8
TeV. Initial-to-final state color interference effects are studied by examining
particle distribution patterns in events with a W boson and at least one jet.
The data are compared to Monte Carlo simulations with different color coherence
implementations and to an analytic modified-leading-logarithm perturbative
calculation based on the local parton-hadron duality hypothesis.Comment: 13 pages, 6 figures. Submitted to Physics Letters
Improved W boson mass measurement with the D0 detector
We have measured the W boson mass using the D0 detector and a data sample of
82 pb^-1 from the Tevatron collider. This measurement used W -> e nu decays,
where the electron is close to a boundary of a central electromagnetic
calorimeter module. Such 'edge' electrons have not been used in any previous D0
analysis, and represent a 14% increase in the W boson sample size. For these
electrons, new response and resolution parameters are determined, and revised
backgrounds and underlying event energy flow measurements are made. When the
current measurement is combined with previous D0 W boson mass measurements, we
obtain M_W = 80.483 +/- 0.084 GeV. The 8% improvement from the previous D0
measurement is primarily due to the improved determination of the response
parameters for non-edge electrons using the sample of Z bosons with non-edge
and edge electrons.Comment: submitted to Phys. Rev. D; 20 pages, 18 figures, 9 table
Measurement of the p-pbar -> Wgamma + X cross section at sqrt(s) = 1.96 TeV and WWgamma anomalous coupling limits
The WWgamma triple gauge boson coupling parameters are studied using p-pbar
-> l nu gamma + X (l = e,mu) events at sqrt(s) = 1.96 TeV. The data were
collected with the DO detector from an integrated luminosity of 162 pb^{-1}
delivered by the Fermilab Tevatron Collider. The cross section times branching
fraction for p-pbar -> W(gamma) + X -> l nu gamma + X with E_T^{gamma} > 8 GeV
and Delta R_{l gamma} > 0.7 is 14.8 +/- 1.6 (stat) +/- 1.0 (syst) +/- 1.0 (lum)
pb. The one-dimensional 95% confidence level limits on anomalous couplings are
-0.88 < Delta kappa_{gamma} < 0.96 and -0.20 < lambda_{gamma} < 0.20.Comment: Submitted to Phys. Rev. D Rapid Communication
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt{s} = 1.96 TeV using Kinematic Characteristics of Lepton + Jets Events
We present a measurement of the top quark pair ttbar production cross section
in ppbar collisions at a center-of-mass energy of 1.96 TeV using 230 pb**{-1}
of data collected by the DO detector at the Fermilab Tevatron Collider. We
select events with one charged lepton (electron or muon), large missing
transverse energy, and at least four jets, and extract the ttbar content of the
sample based on the kinematic characteristics of the events. For a top quark
mass of 175 GeV, we measure sigma(ttbar) = 6.7 {+1.4-1.3} (stat) {+1.6- 1.1}
(syst) +/-0.4 (lumi) pb, in good agreement with the standard model prediction.Comment: submitted to Phys.Rev.Let
Measurement of the ttbar Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Lepton + Jets Events with Lifetime b-tagging
We present a measurement of the top quark pair () production cross
section () in collisions at TeV
using 230 pb of data collected by the D0 experiment at the Fermilab
Tevatron Collider. We select events with one charged lepton (electron or muon),
missing transverse energy, and jets in the final state. We employ
lifetime-based b-jet identification techniques to further enhance the
purity of the selected sample. For a top quark mass of 175 GeV, we
measure pb, in
agreement with the standard model expectation.Comment: 7 pages, 2 figures, 3 tables Submitted to Phys.Rev.Let
Measurement of the Isolated Photon Cross Section in p-pbar Collisions at sqrt{s}=1.96 TeV
The cross section for the inclusive production of isolated photons has been
measured in p anti-p collisions at sqrt{s}=1.96 TeV with the D0 detector at the
Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV
and have pseudorapidity |eta|<0.9. The cross section is compared with the
results from two next-to-leading order perturbative QCD calculations. The
theoretical predictions agree with the measurement within uncertainties.Comment: 7 pages, 5 figures, submitted to Phys.Lett.
- âŠ