287 research outputs found
Molecular Characterization of a isoenzyme of the targeting peptide degrading protease, PreP2- catalysis, subcellular localization, expression and evolution
We have previously identified a zinc metalloprotease involved in the degradation of mitochondrial and chloroplast targeting peptides, the presequence protease (PreP). In the Arabidopsis thaliana genomic database, there are two genes that correspond to the protease, the zinc metalloprotease (AAL90904) and the putative zinc metalloprotease (AAG13049). We have named the corresponding proteins AtPreP1 and AtPreP2, respectively. AtPreP1 and AtPreP2 show significant differences in their targeting peptides and the proteins are predicted to be localized in different compartments. AtPreP1 was shown to degrade both mitochondrial and chloroplast targeting peptides and to be dual targeted to both organelles using an ambiguous targeting peptide. Here, we have overexpressed, purified and characterized proteolytic and targeting properties of AtPreP2. AtPreP2 exhibits different proteolytic subsite specificity from AtPreP1 when used for degradation of organellar targeting peptides and their mutants. Interestingly, AtPreP2 precursor protein was also found to be dual targeted to both mitochondria and chloroplasts in a single and dual in vitro import system. Furthermore, targeting peptide of the AtPreP2 dually targeted green fluorescent protein (GFP) to both mitochondria and chloroplasts in tobacco protoplasts and leaves using an in vivo transient expression system. The targeting of both AtPreP1 and AtPreP2 proteases to chloroplasts in A. thaliana in vivo was confirmed via a shotgun mass spectrometric analysis of highly purified chloroplasts. Reverse transcription–polymerase chain reaction (RT–PCR) analysis revealed that AtPreP1 and AtPreP2 are differentially expressed in mature A. thaliana plants. Phylogenetic evidence indicated that AtPreP1 and AtPreP2 are recent gene duplicates that may have diverged through subfunctionalization
Second order gradient ascent pulse engineering
We report some improvements to the gradient ascent pulse engineering (GRAPE)
algorithm for optimal control of quantum systems. These include more accurate
gradients, convergence acceleration using the BFGS quasi-Newton algorithm as
well as faster control derivative calculation algorithms. In all test systems,
the wall clock time and the convergence rates show a considerable improvement
over the approximate gradient ascent.Comment: Submitted for publicatio
Changing current practice in urology: Improving guideline development and implementation through stakeholder engagement
Effective stakeholder integration for guideline development should improve outcomes and adherence to clinical practice guidelines
Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy
It is shown that certain kinds of behavior, which hitherto were expected to
be characteristic for classical gravity and quantum field theory in curved
spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography
on event horizons and an area proportionality of entropy, have in fact an
unnoticed presence in Minkowski QFT. This casts new light on the fundamental
question whether the volume propotionality of heat bath entropy and the
(logarithmically corrected) dimensionless area law obeyed by
localization-induced thermal behavior are different geometric parametrizations
which share a common primordeal algebraic origin. Strong arguments are
presented that these two different thermal manifestations can be directly
related, this is in fact the main aim of this paper. It will be demonstrated
that QFT beyond the Lagrangian quantization setting receives crucial new
impulses from holography onto horizons. The present paper is part of a project
aimed at elucidating the enormous physical range of "modular localization". The
latter does not only extend from standard Hamitonian heat bath thermal states
to thermal aspects of causal- or event- horizons addressed in this paper. It
also includes the recent understanding of the crossing property of formfactors
whose intriguing similarity with thermal properties was, although sometimes
noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in
this form the paper will appear in Foundations of Physic
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
- …