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;
We have previously identified a zinc metalloprotease

involved in the degradation of mitochondrial and chloro-

plast targeting peptides, the presequence protease (PreP).

In the Arabidopsis thaliana genomic database, there are two

genes that correspond to the protease, the zinc metallopro-

tease (AAL90904) and the putative zinc metalloprotease

(AAG13049). We have named the corresponding proteins

AtPreP1 and AtPreP2, respectively. AtPreP1 and AtPreP2

show significant differences in their targeting peptides and

the proteins are predicted to be localized in different com-

partments. AtPreP1 was shown to degrade both mito-

chondrial and chloroplast targeting peptides and to be dual

targeted to both organelles using an ambiguous targeting

peptide. Here, we have overexpressed, purified and charac-

terized proteolytic and targeting properties of AtPreP2.

AtPreP2 exhibits different proteolytic subsite specificity

from AtPreP1 when used for degradation of organellar tar-

geting peptides and their mutants. Interestingly, AtPreP2

precursor protein was also found to be dual targeted to

both mitochondria and chloroplasts in a single and dual in

vitro import system. Furthermore, targeting peptide of the

AtPreP2 dually targeted green fluorescent protein (GFP) to

both mitochondria and chloroplasts in tobacco protoplasts

and leaves using an in vivo transient expression system. The

targeting of both AtPreP1 and AtPreP2 proteases to chloro-

plasts in A. thaliana in vivo was confirmed via a shotgun

mass spectrometric analysis of highly purified chloroplasts.

Reverse transcription–polymerase chain reaction (RT–

PCR) analysis revealed that AtPreP1 and AtPreP2 are dif-

ferentially expressed in mature A. thaliana plants. Phylo-

genetic evidence indicated that AtPreP1 and AtPreP2 are

recent gene duplicates that may have diverged through sub-

functionalization.

Keywords: Chloroplasts — Dual targeting — Mitochondria —

Presequence protease — Protein import — Zinc metalloprotease.

Abbreviations: ESI, electrospray ionization; EST, expressed
sequence tag; GB, grinding buffer; GFP, green fluorescent protein;
GST, glutathione-S-transferase; HPLC, high-performance liquid chro-
matography; IP, import buffer; MPP, mitochondrial processing pepti-
dase; MS, mass spectrometry; PK, proteinase K; PreP, presequence
protease; RT–PCR, reverse transcription–polymerase chain reaction;
SPP, stromal processing peptidase.

Introduction

The majority of mitochondrial and chloroplastic proteins

are encoded in the nucleus and synthesized on polyribosomes

in the cytosol as precursor proteins carrying a cleavable N-ter-

minal extension known as a signal or targeting peptide; in some

cases, targeting information is stored in the mature part of the

protein (Pfanner and Geissler 2001). The mitochondrial and

chloroplastic targeting peptides display similar physiochemical

properties; they have a high content of hydrophobic, basic and

hydroxylated amino acid residues and a very low content of

acidic amino acids. Bioinformatic analysis of mitochondrial

and chloroplastic targeting peptides revealed structural differ-

ences as mitochondrial presequences are predicted to fold into

a positively charged amphiphilic α-helix (von Heijne 1986),

whereas chloroplastic transit peptides display a random coil

structure (Schmidt et al. 1979). Nuclear magnetic resonance

(NMR) studies confirmed that the mitochondrial presequences

adopt an amphiphilic α-helix structure (Abe et al. 2000,

Moberg et al. 2004). However, a helical structure for chloro-

plast transit peptides in membrane mimetic environments has

also been reported (Bruce 2000). Protein import into mito-

chondria and chloroplasts is believed to be highly specific in

vivo, despite the fact that mistargeting of mitochondrial pro-

teins to chloroplasts has been observed in vitro (Whelan et al.

1990, Cleary et al. 2002). Recent advances in the yeast mito-

chondrial protein import indicate the presence of a sorting

7 Corresponding author: E-mail, e_glaser@dbb.su.se; Fax, +46-81-53679.

 at T
he U

niversity of T
ennessee on S

eptem
ber 14, 2010

pcp.oxfordjournals.org
D

ow
nloaded from

 

http://pcp.oxfordjournals.org/


Dual targeting and function of the AtPreP2986

mechanism of proteins at the level of mRNA (Ginsberg et al.

2003); however, no such sorting mechanism has been identified

so far in plants. After import of precursor proteins to the mito-

chondrial matrix, mitochondrial presequences are proteolyti-

cally cleaved off by the mitochondrial processing peptidase

(MPP). In plants, MPP is integrated into the cytochrome bc
1

complex of the respiratory chain, whereas in mammals and

yeast, MPP is a soluble matrix protease (Glaser et al. 1998,

Pfanner and Geissler 2001). The proteolytic processing of pre-

cursor proteins results in the production of mature proteins that

fold into their native functional conformation and free prese-

quences. After import in chloroplast stroma, precursor proteins

are processed by a proteolytic action of the soluble stromal

processing peptidase (SPP) also resulting in the production of

mature proteins (Richter and Lamppa 1998, Richter and

Lamppa 2002) and free transit peptides.

Targeting peptides are potentially harmful for the struc-

ture and function of mitochondria and chloroplasts. They can

perturb natural and artificial lipid bilayers. Addition of prese-

quences to mitochondria results in membrane lysis, uncou-

pling of respiration and dissipation of the membrane potential

(Roise et al. 1986, Glaser and Cumsky 1990a, Glaser and Cum-

sky 1990b, Nicolay et al. 1994). The mechanism of action of

presequences on the mitochondrial membrane is not clear, but

it has been proposed that the presequence peptides induce

channel opening (Lu and Beavis 1997) or that the peptides

themselves form a pore (Matsuzaki et al. 1996). Furthermore,

mitochondrial presequences have been shown to possess anti-

microbial activity (Hugosson et al. 1994). Therefore, free tar-

geting peptides generated inside the mitochondria and

chloroplasts have to be rapidly removed, e.g. by proteolytic

degradation. Both ATP-dependent and ATP-independent prote-

ases have been reported in mitochondria and chloroplasts

(Dyck et al. 1994, Sagarra et al. 1999, Adam et al. 2001,

Halperin et al. 2001, Arnold and Langer 2002). ATP-depend-

ent proteases are usually involved in degradation of misfolded

proteins and in maintaining the stoichiometric amounts of the

protein complexes, while ATP-independent proteases are

responsible for the degradation of short unfolded polypeptides.

We have shown rapid proteolytic degradation of the mito-

chondrial presequences after import into the mitochondria by

an ATP-independent protease (Ståhl et al. 2000). A protease,

presequence protease (PreP), responsible for this degradation,

was isolated from potato tuber mitochondrial matrix and identi-

fied by mass spectrometric (MS) analysis, electrospray ioniza-

tion (ESI) and tandem MS (MS/MS). The peptide sequence

obtained after MS matched two proteins in the Arabidopsis

thaliana genomic database, zinc metalloprotease (AAL90904)

and a putative zinc metalloprotease (AAG13049) (Ståhl et al.

2002) that we have named AtPreP1 (previously referred to as

AtZnMP, Ståhl et al. 2002) and AtPreP2, respectively. Both

proteases display high amino acid sequence similarity, with

Fig. 1 Overexpression, purification and
catalytic activity of AtPreP2. The mature
(m) AtPreP2 was cloned as a fusion pro-
tein with GST and the overexpression of
the fusion protein was carried out in E.

coli. (a) Expression and purity of the
mAtPreP2 analyzed by 12% SDS–PAGE.
Total cell lysate from uninduced E. coli

(lane 1) and cell lysate induced after
addition of IPTG (lane 2). Total cell
lysate from overexpressed E. coli was
applied to a GSTrap FF 1-ml column, and
the mAtPreP2 was eluted after cleavage
with PreScission protease (lane 3). Flow
through after binding of the GST–
AtPreP2 fusion protein to the column
(lane 4). (b) Mitochondrial targeting pep-
tide N5.7pF

1
β(2–54)-hsl and chloro-

plastic targeting peptide SStpNt were
incubated in the absence (lanes 1 and 4)
or presence (lanes 2 and 5) of mAtPreP2,
or in the presence of mAtPreP2 and o-
phenanthroline (lanes 3 and 6), as
described in Materials and Methods. The
amino acid sequences of both peptides
are depicted at the top.
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Dual targeting and function of the AtPreP2 987

most differences occurring in their predicted organellar target-

ing peptides. Both AtPreP1 and AtPreP2 harbor a characteristic

inverted zinc-binding motif, HILEHX
74

E, and are classified to

the pitrilysin protease subfamily A. We have shown that the

PreP1 functions as a signal peptide-degrading protease in both

mitochondria and chloroplasts and is dual targeted to both

organelles by an ambiguous targeting peptide (Bhushan et al.

2003, Moberg et al. 2003).

Here we have overexpressed and purified AtPreP2 and

investigated its proteolytic properties against targeting pep-

tides and their mutants. Furthermore, we have studied target-

ing properties of AtPrP2 in vitro as well as in vivo using green

fluorescent protein (GFP) fusion constructs. A random shotgun

approach followed by MS analysis was used to study the occur-

rence of AtPreP1 and AtPreP2 in chloroplasts, and reverse

transcription–polymerase chain reaction (RT–PCR) analysis to

study tissue-dependent expression of the proteins. Phylo-

genetic methods were used to characterize the timing of the

duplication event and subsequent sequence divergence.

Results

Overexpression, purification and proteolytic activity of the

recombinant AtPreP2

The AtPreP2 cDNA encodes a protein of 1080 amino acids

(AAG13049). Single organelle intracellular prediction programs,

MitoProt (http://mips.gsf.de/cgi-bin/proj/medgen/mitofilter) and

ChloroP (http://www.cbs.dtu.dk/services/ChloroP/), predicted

that the targeting peptide of AtPreP2 is 85 amino acid residues

long and the mature protein 995 residues long. The mature por-

tion of AtPreP2 was cloned as a fusion protein with glutathi-

one-S-transferase (GST) and the fusion protein (GST–PreP2)

was overexpressed in Escherichia coli (Fig. 1a). The fusion

protein was purified on a GSTrap FF column, and the AtPreP2

was eluted after cleavage of the fusion protein with PreScis-

sion protease (Fig. 1a, lane 3). The recombinant AtPreP2 pro-

tein (99% purity) had an estimated molecular mass of 110 kDa.

The proteolytic action of the recombinant AtPreP2 was

tested against a mitochondrial targeting peptide derived from

the ATP synthase F
1
β subunit from Nicotiana plumbaginifolia,

N
5.7

pF
1
β(2–54), and a chloroplastic targeting peptide derived

from the small subunit of biphosphate carboxylase/oxygenase

(Rubisco) from Nicotiana tabacum, SStpNt. Incubation of both

targeting peptides with AtPreP2 resulted in complete degrada-

tion of the targeting peptides (Fig. 1b, lanes 2 and 5). Addition

of o-phenanthroline, a specific inhibitor of the metallopro-

tease, completely abolished the proteolytic activity of AtPreP2

(Fig. 1b, lanes 3 and 6). These results show that AtPreP2 has a

dual proteolytic function against both mitochondrial and

chloroplastic targeting peptides.

Differences in cleavage specificity of AtPreP1 and AtPreP2

The cleavage specificity of AtPreP1 and AtPreP2 was

studied by investigating cleavage of a specific fluorescent pep-

tide P1, the mitochondrial presequence peptide N
5.7

pF
1
β(2–54)

(Ståhl et al. 2002, Moberg et al. 2003) and the chloroplastic

transit peptide of N. tabaccum small subunit of Rubisco,

SStpNt (Fig. 2). Incubation periods were shortened in compari-

son with those used in Fig. 1 in order to detect formation of

degradation intermediates. After incubation of the peptides for

30 min at 30°C, an intermediate product was produced by

AtPreP2 with both the P1 and N
5.7

pF
1
β(2–54) peptide (Fig. 2a,

lane 2; and b, lane 2), while no such intermediate product was

seen when these two peptides were incubated with AtPreP1

(Fig. 2a, lane 3; and b, lane 3). The intermediate could not be

detected upon degradation with AtPreP1 even when much

shorter incubation times and different concentrations of

AtPreP1 were used (not shown). Accumulation of intermediate

products of the peptides after incubation with AtPreP2 shows

that AtPreP1 and AtPreP2 have different cleavage specificity.

Degradation by AtPreP1 and AtPreP2 has also been investi-

gated with the chloroplastic transit peptide SStpNt and its

mutants (Fig. 3). Mutants were designed to study the effect of

changed flexibility of the transit peptide on import and process-

Fig. 2 Differences in cleavage specificity of AtPreP1 and AtPreP2.
Degradation of peptides by AtPreP1 and AtPreP2. (a) The fluorescent
peptide P1 incubated with AtPreP1 or AtPreP2. The degradation assays
were performed as described in Materials and Methods. (b) Genera-
tion of proteolytic fragments of the F

1
β presequence by AtPreP1 and

AtPreP2. AtPreP1 and AtPreP2 were incubated with the N5.7pF
1
β(2–

54)-hsl peptide and analysed on Tris-tricine gels as described in Mate-
rials and Methods.
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Dual targeting and function of the AtPreP2988

ing. Alternative processing has been detected with these

mutants (S. J. Wright and B. D. Bruce, unpublished). AtPreP2

had the capacity to degrade both SStpNt and all the mutants,

whereas AtPreP1 could not degrade the SStpNtP36A mutant

with decreased flexibility as proline has been changed to

alanine (Fig. 3b). These results additionally confirm the differ-

ent cleavage specificity of AtPreP1 and AtPreP2.

In vitro single and dual import of AtPreP2 into mitochondria

and chloroplasts

Most sequence differences between AtPreP1 and AtPreP2

were found in their targeting peptides. Whereas AtPreP1 was

predicted to be a mitochondrial protein by both TargetP (http://

www.cbs.dtu.dk/services/TargetP/) and Predotar (http://www.

inra.fr/predotar/), programs designed to predict intracellular

organellar targeting ability, AtPreP2 was suggested to be a

chloroplastic protein. In order to study the subcellular localiza-

tion of AtPreP2, in vitro import of the AtPreP2 precursor was

studied into isolated chloroplasts and mitochondria. Incubation

of the AtPreP2 precursor protein with isolated chloroplasts

resulted in import and processing of the precursor form of the

protein to the mature sized product (Fig. 4a, lane 2). The

mature form was resistant to thermolysin treatment, evidence

that AtPreP2 was fully translocated and processed in the

chloroplasts (Fig. 4a, lane 3). The additional protein band

below AtPreP2 (in the precursor lane) is clearly different from

that of the mature sized protein produced after import and

processing, and is not imported nor bound to mitochondria or

chloroplasts as it disappears after pre-incubation and washing

of organelles. Incubation of the AtPreP2 precursor protein with

isolated mitochondria also resulted in import and processing of

the precursor to the mature size product (Fig. 4b, lane 2). The

imported precursor and mature form of the AtPreP2 protein

were resistant to proteinase K (PK) treatment, showing import

of AtPreP2 into mitochondria (Fig. 4b, lane 3). Furthermore,

import of the AtPreP2 precursor into mitochondria was depend-

ent on membrane potential, as neither the PK-resistant form of

the precursor nor the mature protein was detected in the pres-

ence of an ionophore, valinomycin (Fig. 4b, lanes 4 and 5).

These results indicate that AtPreP2 might be a dually targeted

protein to both chloroplasts and mitochondria.

Import of the AtPreP2 precursor was also tested using the

dual in vitro import system in which the precursor is simultane-

ously incubated with both isolated organelles (Rudhe et al.

2002). Under these conditions AtPreP2 was imported and proc-

essed in both mitochondria and chloroplasts (Fig. 4c, lanes 2

and 4). The mature form of AtPreP2 generated after processing

of the precursor was resistant in both organelles to externally

Fig. 3 Degradation of SStpNt and its
mutants by AtPreP1 and AtPreP2. (a)
Amino acid sequences of wild-type SStpNt
and its mutants. Mutations in SStpNt are
underlined. (b) Degradation of SStpNt pep-
tide and its mutants by AtPrep1 and
AtPreP2. The degradation assays were per-
formed as described in Materials and
Methods. AtPreP1 and AtPreP2 were incu-
bated with the indicated peptide and ana-
lyzed on Tris-tricine gels as described in
Materials and Methods. The lower band in
the peptide represents a degradation prod-
uct as marked by an asterisk.

 at T
he U

niversity of T
ennessee on S

eptem
ber 14, 2010

pcp.oxfordjournals.org
D

ow
nloaded from

 

http://www.cbs.dtu.dk/services/TargetP/
http://www.inra.fr/predotar/
http://www.inra.fr/predotar/
http://pcp.oxfordjournals.org/


Dual targeting and function of the AtPreP2 989

added thermolysin, showing dual import of AtPreP2 (Fig. 4c,

lanes 3 and 5) and additionally supporting dual localization of

AtPreP2.

In vivo dual import of the AtPreP2–GFP fusion protein into

tobacco protoplasts

Dual import of the AtPreP2 into mitochondria and chloro-

plasts was investigated further in vivo using GFP fusion and

transient expression in tobacco protoplasts and leaves. The tar-

geting peptide and 70 amino acid residues from the mature part

of the AtPreP2 protein were fused to GFP (Fig. 5B) under the

strong plant transcription promoter EN50PMA4 (Zhao et al.

1999). Seventy amino acids from the mature part of the

AtPreP2 were fused in order to preserve the native processing

site. A known mitochondrial targeting peptide of the ATP

synthase F
1
β-subunit from N. plumbaginifolia fused to GFP

(F
1
β–GFP) was used as a control for mitochondrial targeting

(Duby et al. 2001). Transient expression of the AtPreP2–GFP

fusion protein was performed in tobacco protoplasts and target-

ing was analyzed by confocal microscopy. Protoplasts trans-

formed with the F
1
β–GFP construct targeted GFP to small,

punctuated shape structures (Fig. 5C, a). These small punctu-

ated structures were also labeled by the red fluorescence of

Mitotracker (Fig. 5C, b). Co-localization of GFP with

Mitotracker is shown in the yellow merged image in Fig. 5C, c.

GFP alone was found to be present all over in the cytosol (Fig.

5C, f–j). When protoplasts were transformed with the AtPreP2–

GFP construct, fluorescence was found to be localized in two

different locations, the punctuated structures and large, round

structures (Fig. 5C, k). Fluorescence in the punctuated struc-

tures co-localized with Mitotracker (Fig. 4C, l and m), while

fluorescence in the large, round structures co-localized with

chloroplast autofluorescence (Fig. 5C, n and o). These results

showed that the targeting peptide of AtPreP2 can target GFP to

both mitochondria and chloroplasts in vivo and support the

dual localization of AtPreP2.

Mass spectrometric identification of AtPreP1 and AtPreP2 in

Arabidopsis chloroplasts

We have shown earlier that the PreP is present in both

mitochondria and chloroplasts in different plant species using

antibodies raised against an 18 amino acid residue peptide in

the C-terminal portion of the enzyme (Moberg et al. 2003).

However, these antibodies do not distinguish between AtPreP1

and AtPreP2 as the antigenic peptide is identical in both

enzymes. We also tested cross-reactivity of the AtPreP1 anti-

bodies raised against the full-length AtPreP1 and found that

these antibodies also recognized both AtPreP1 and AtPreP2

(data not shown).

A random, ‘bottom-up’ analysis of isolated intact A.

thaliana chloroplasts was carried out in order to identify the

proteases. One peptide corresponding to AtPreP1 was repeat-

edly found with the highest score; however, several other

unique peptides with lower confidence scores were also identi-

fied for both the AtPreP1 and AtPreP proteins (Table 1). These

results suggest that under these growth conditions, both

AtPreP1 and AtPreP2 are present in the Arabidopsis chloro-

plasts isolated under the highly stringent conditions. Unfortu-

nately, this methodology cannot be used to give quantitative

information, although abundant proteins, such as Rubisco, cer-

tainly provide more abundant trypsin-derived peptides (data

not shown).

Fig. 4 In vitro import of AtPreP2 into mitochondria and chloro-
plasts. (a) Chloroplastic in vitro import of AtPreP2. Thermolysin (5 µg
µl–1) was added after import where indicated. (b) Mitochondrial in
vitro import of AtPreP2. Proteinase K (10 µg/µl) was added after
import where indicated. Valinomycin (1 µM) was added prior to
import where indicated. (c) Simultaneous dual in vitro import of
AtPreP2 in mitochondria and chloroplasts. AtPreP2 was incubated with
the isolated mitochondria and chloroplasts in the same reaction mix-
ture. Mitochondria and chloroplasts were reisolated on a 4% Percoll
gradient after import as described in Materials and Methods. Thermo-
lysin (5 µg µl–1) was added after reisolation of the mitochondria and
chloroplasts as indicated. P, precursor; m, mature.
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Dual targeting and function of the AtPreP2990

Organ-specific differential expression of AtPreP1 and AtPreP2

transcripts

Expression of the AtPreP1 and AtPreP2 transcripts was

studied in 3-week-old seedlings and in different organs in

mature A. thaliana plants by a semi-quantitative RT–PCR

method. PCR conditions were carefully optimized for the quan-

titative measurements of the transcripts level. Both the AtPreP1

and AtPreP2 transcripts were detected in the 3-week-old seed-

lings employing 30 cycles of PCR (Fig. 6a). For the quantita-

tive measurements of the AtPreP1 and AtPreP2 transcripts, it

was found that 125 ng of total RNA with 25 cycles of PCR

yielded quantitative measurements of the transcripts. Constitu-

tively expressed actin was used as an internal control (Fig. 6b,

lower panel). The AtPreP1 transcript was detected only in sil-

ique and flower although the transcript level was much higher

in the inflorescence (Fig. 6b, middle panel). In contrast to

AtPreP1, the AtPreP2 transcript was detected in leaf, flower

and root with no transcript detected in silique and shoot (Fig.

6b, upper panel). These results suggest that AtPreP1and

AtPreP2 are expressed in a differential, organ-specific manner.

Evolutionary analysis

A gene family consisting of close and long distance

homologs of AtPreP1 and AtPreP2 was built by combining

information from three sources. The gene families from The

Adaptive Evolution Database (TAED) (Roth et al. 2005) were

supplemented with longer distance BLAST hits from GenBank

and near-full length homologs that could be manually assem-

Fig. 5 In vivo transient expression of the AtPreP2–GFP fusion protein in tobacco protoplasts. (A) The 155 N-terminal amino acid residues of
AtPreP2. The predicted targeting sequence is shown in red. (B) Schematic presentation of the AtPreP2–GFP fusion construct used in the transient
expression experiments. (C) Transient expression of the GFP fusion constructs in N. tabacum protoplasts: F

1
β-GFP (a–e), GFP alone (f–j) and

AtPreP2–GFP (k–o), as described in Materials and Methods. The GFP column shows the signal detected in the green channel; the Mitotracker
column shows the signal detected in the red channel; the GFP + Mitotracker column corresponds to the merging of the two previous columns,
where yellow represents the superpositions of green and red; the chlorophyll column corresponds to the chloroplast autofluorescence signal
detected in the far-red channel; and the GFP + chlorophyll column corresponds to the merging of the green channel and the chlorophyll signal
detected in the far-red channel. Scale bars, 10 µm.
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bled from a BLAST search against the NCBI expressed

sequence tag (EST) collection. The sequences in this gene fam-

ily were used to calculate a multiple sequence alignment using

POA (Lee et al. 2002) and to build a phylogenetic tree using

MRBAYES (Huelsenbeck and Ronquist 2001) (Fig. 7). This

tree shows AtPreP1 and AtPreP2 to be close relatives and sug-

gests the importance of searching for close homologs of these

proteins in other Brassicaceae species.

Discussion

In the present study, we have investigated proteolytic

function, intracellular localization, expression and evolution of

AtPreP2, a homolog of the targeting peptide degrading

AtPreP1. The purified recombinant AtPreP2 retained the

proteolytic activity against the mitochondrial and chloroplastic

targeting peptides, showing that AtPreP1 and AtPreP2 in A.

thaliana are paralogs with the same cellular function. There is

a single AtPreP homolog in yeast, Ydr430cp and human, hMPI.

The Ydr430cp gene is non-essential for yeast survival.

Arabidopsis thaliana T-DNA insertion knock-out mutants of

AtPreP1 and AtPreP2 are also available (University of Wiscon-

sin Biotechnology Center USA, Nottigham Arabidopsis Stock

Center, UK or Salk Institute Genomic Analysis Laboratory,

USA). No A. thaliana phenotype has been observed, indicating

that when one of the proteases is absent, the isoenzyme metal-

loprotease or another protease takes over degradation of the tar-

geting peptides. It will be interesting to investigate this

possibility in the future by generating a double knockout

mutant of AtPreP1 and AtPreP2. Comparison of the AtPreP2

and AtPreP1 proteolytic activities shows that the proteases have

different proteolytic subsite preference. Whereas incubation of

the substrate P1 and N
5.7

pF
1
β(2–54) peptides with AtPreP2

resulted in generation of an easily detected intermediate prod-

uct (see Fig. 2), no such intermediate was observed upon deg-

radation with AtPreP1. Also, degradation of the chloroplastic

transit peptide SStpNt and its mutants has confirmed different

cleavage specificity of AtPreP1 and AtPreP2. The SStpNtP36A

mutant has decreased flexibility in comparison with the wild-

type SStpNt transit peptide where proline has been changed to

alanine; SStpNtP36A could not be degraded by AtPreP1,

whereas it was completely degraded by AtPreP2. Thorough

substrate specificity studies of the two proteases using MS

analysis of degradation products, mitochondrial presequence

mutant peptides as well as a number of other synthetic pep-

tides show differences in amino acid recognition and cleavage

efficiency (Ståhl et al. 2005). These studies indicate that AtPreP1

and AtPreP2 may have overlapping but complementary proteo-

lytic specificity allowing great variety of targeting peptides

being rapidly degraded.

As both TargetP and Predotar clearly suggest that AtPreP2

is localized to chloroplasts, it was of interest to investigate

organellar targeting of AtPreP2. We have investigted targeting

properties of AtPreP2 both in vitro and in vivo. In vitro import

studies of the full-length AtPreP2 precursor in both a single and

a dual import system (in the presence of a competing organelle,

Rudhe et al. 2002) showed that AtPreP2 could be targeted to

both mitochondria and chloroplasts, giving a strong indication

of the dual localization of AtPreP2. There are a few reports

indicating in vitro mistargeting of chloroplastic proteins to

mitochondria, but no reports showing mistargeting of a mito-

chondrial precursor protein into chloroplasts are available. As

Fig. 6 Organ-specific differential ex-
pression of AtPrep1 and AtPreP2 tran-
scripts in A. thaliana plants. (a) RT–PCR
was performed on the total cellular RNA
isolated from 3-week-old A. thaliana

seedlings. Different numbers of cycles
were employed after reverse transciptase
reactions as indicated. (b) RT–PCR was
performed on the total cellular RNA iso-
lated from leaves, shoot, siliques, flow-
ers and roots of mature A. thaliana plants
as described in Materials and Methods.
The RT–PCR products were analysed us-
ing 2% agarose gel electrophoresis in the
presence of ethidium bromide.
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in vitro import approaches might have limitations due to a lack

of an intact cellular system, we have also investigated the tar-

geting ability of the AtPreP2 targeting peptide in vivo using

GFP constructs. One hundred and fifty-five N-terminal amino

acid residues of AtPreP2 were fused to GFP and transient

expression of the fusion construct was performed in tobacco

protoplasts (see Fig. 5) and intact tobacco leaves (data not

shown). The targeting peptide of AtPreP2 dually targeted GFP

to both mitochondria and chloroplasts in both systems, show-

ing that it has ambiguous targeting properties. It has classical

features of both the mitochondrial and chloroplastic targeting

peptides with respect to the amino acid content but is predicted

to be unstructured (Jpred; http://www.compbio.dundee.ac.uk/

~www-jpred/submit.html), which is a typical feature of chloro-

plastic targeting peptides. So far there are 25 proteins, each of

them encoded by a single gene, that are reported to be dually

targeted to both mitochondria and chloroplasts. These proteins

are called dual-targeted proteins (Peeters and Small 2001,

Silva-Filho 2003). The majority of these proteins are involved

in gene expression, e.g. aminoacyl-tRNA synthetases, RNA

polymerase, methionine aminopeptidases and a peptidyl

deformylase. Other dual-targeted enzymes are related to pro-

tection against oxidative stress, e.g. glutathione reductase

(Rudhe et al. 2002) and ascorbate peroxidase (Chew et al.

2003). AtPreP1 (Bhushan et al. 2003, Moberg et al. 2003) and

AtPreP2 involved in cellular protein turnover are new repre-

sentatives of this group.

Intact chloroplasts have been analysed by ‘bottom-up’ or

shotgun proteomics in order to identify the proteases (see Table

1). In this technique, isolated chloroplasts were treated with

trypsin to produce peptides which are separated by high-per-

formance liquid chromatography (HPLC) and then fed on-line

to the mass spectrometer where they are ionized and separated

by electric fields. The peptide ions are resolved by their mass

to charge ratio and subjected a collision-induced dissociation

(CID) MS/MS stage. A computer algorithm (Mascot, Matrix

Science, Ltd; Perkins et al. 1999) was used to compare the

experimental spectrum with a theoretical spectrum calculated

from an in silico tryptic digest of the proteome. Proteins that

have a protein score >30 can be considered as certain; however,

the presence of several fragments of a protein with a lower

score gives a significant indication of its presence. Four sepa-

rate, double chloroplast isolation and proteomic analysis exper-

iments were done. In three separate experiments, a single

peptide was repeatedly detected that was unique to AtPreP1.

Several other peptides as indicated in Table 1 for both AtPreP1

and AtPreP2 were also identified, indicating the presence of

both AtPreP1 and AtPreP2 in chloroplasts. The chloroplast

preparations used were very pure. Only several cytosolic

ribosomal proteins were identified, but no proteins with mito-

chondrial, endoplasmic reticulum (ER), Golgi apparatus, per-

oxisomal or nuclear annotation were detected.

Expression analysis of the A. thaliana mitochondrial pro-

tein import apparatus TOM and TIM isoforms in various

organs showed that although they were present in small multi-

gene families, only one member was prominently expressed

(Lister et al. 2004). As the A. thaliana genome harbors both the

AtPreP1 and the AtPreP2 genes and both the proteases are

dually targeted to both mitochondria and chloroplasts, we next

studied whether both of these proteases are expressed in A.

thaliana and if so are they expressed constitutively or in an

organ-specific manner. Expression of the AtPreP1 and AtPreP2

transcripts was studied using semi-quantitative RT–PCR under

carefully optimized conditions for the quantitative measure-

ments of the transcripts. Both the AtPreP1 and AtPreP2 tran-

Fig. 7 Evolutionary analysis of AtPreP1 and AtPreP2 together with
other homologs. An unrooted phylogenetic tree of AtPreP1 and
AtPreP2 together with homologs from GenBank and reconstructed
full-length transcripts from the EST database was calculated using Mr.
Bayes. This tree shows AtPreP1 and AtPreP2 to be products of a recent
gene duplication event, given the likely rooting. Hs, Homo sapiens

(human); Mm, Mus musculus (mouse); Gg, Gallus gallus (chicken);
Xl, Xenopus laevis (african clawed frog); Dr, Danio rerio (zebrafish);
Am, Apis mellifera (honey bee); Sc, Saccharomyces cerevisiae (yeast);
Dd, Dictyostelium discoideum (amoeba); At,Arabidopsis thaliana

(thale cress); Mt, Medicago truncatula (barrel medic); Le, Lycoper-

sicon esculentum (tomato); St, Solanum tuberosum (potato); Os, Oryza

sativa (rice); Zm, Zea mais (corn); Dm, Drosophila melanogaster

(fruit fly); Ec, Escherichia coli (bacterium); Ps, Pisum sativum (pea);
SPP, stromal processing peptidase; MPP, mitochondrial processing
peptidase; AtPreP: presequence protease; MP, metalloprotease.
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scripts were detected in young seedlings; however, in varying

amounts. The AtPreP1 transcript was detected to be present in

silique and in flower although the transcript level was much

higher in flower. In contrast to the AtPreP1 transcript, the

AtPreP2 transcript was found to be present in leaf, flower and

in root, with no transcript detected in shoot and silique. These

results showed that both AtPreP1 and AtPreP2 are expressed in

an organ-specific manner in A. thaliana plants. It will be inter-

esting to investigate the functional importance of higher tran-

script levels of AtPreP1 present during flower development.

AtPreP1 and AtPreP2 are classified as belonging to the

pitrilysin protease subfamily A. This subfamily contains oli-

gopeptidases of 100 kDa, such as the insulin-degrading enzyme

(IDE) and the bacterial homolog protease III (Rawling and

Barrett 1991) that degrade small peptides in a metal-dependent

manner (Duckworth et al. 1998). In contrast, the MPP and the

SPP belong to subfamily B and they mediate single proteolytic

cleavage of precursor proteins. Systematic analysis of gene

duplication in both A. thaliana (Moore and Purugganan 2003)

and in Caenorhanditis elegans (Katju and Lynch 2003) has

indicated that recent gene duplications are subject to selective

pressures different from those of genes that have not been

duplicated. For duplicates where both copies have been

retained, both neofunctionalization (positive selection) and

subfunctionalization (a largely neutral process) play roles in

divergently shaping gene function. It appears that AtPreP1 and

AtPreP2 have subfunctionalized, and analysis of DNA

sequences from Arabidopsis and other Brassicaceae will ena-

ble testing for an entirely neutral process. Other examples of

subfunctionalization through divergence of expression patterns

have been observed (Force et al. 1999). It is clear that truly

redundant gene functions are transitory in evolutionary history.

AtPreP1 and AtPreP2 are recent duplicates in the process of

diverging in function, an ongoing process that generates evolu-

tionary novelty in genomes.

Materials and Methods

Cloning of AtPreP2

Full-length cDNA of AtPreP2 (RAFL09993-D24) was originally
obtained from RIKEN Genomic Sciences, Japan (Seki et al. 2002).
The region of the AtPreP2 precursor encoding the mature portion of
the protein was amplified using Pfu DNA polymerase (Stratagene,
La Jolla, CA, USA) and the primers 5′prep2m (5′-cccgggGTCGCTA-
CACAATCCGCACC-3′) and 3′prep2 (5′-gcggccgcGAGAGCTGCTT-
TCTTCACCTCGAAAA-3′). The PCR product was cloned into a
zero-blunt vector (Invitrogen, Stockholm, Sweden). The insert was
cleaved with NotI and XhoI and subcloned into a pGEX-6P-2 vector
downstream of GST (Amersham Biosciences). In-frame cloning of the
mature PreP2 was verified by DNA sequencing using a DYEnamic
sequencing kit (Amersham Biosciences, Uppsala, Stockholm, Sweden).

Overexpression and purification of the recombinant AtPreP2

The E. coli overexpression strain, BL21 (DE3), was transformed
with the pGEX-6P-2 vector containing the mature portion of AtPreP2
fused to GST and grown at 30°C in LB-medium. After 4 h, 1 mM iso-
propyl-β-D-thiogalactopyranoside (IPTG) was added to the culture and
the incubation was continued for another 6 h. Cells were resuspended
in PBS buffer (140 mM NaCl, 2.7 mM KCl, 10 mM Na

2
HPO

4
,

Table 1 Mass spectrometric identification of AtPreP1 and AtPreP2 in Arabidopsis chloroplasts

Tandem mass spectroscopy of the total chloroplast protein tryptic digest identified 20 peptides corresponding
to both AtPreP1 and AtPreP2 using Mascot as described in Materials and Methods. For the stringency score,
the higher the score, the better and more confident the assignment.

Stringency score

Peptides identified for AtPreP1

ADDLFNLMNCLLQEVQFTDQQR 41.7

SLTNVEKSVAKFLDLLPENPSGGLVTWDGR 14.9

GVSEENVQKVEELIMDTLK 14.3

GVSEENVQKVEELIMDTLK 13.9

DEPCSK 13.0

NGCIVNMTADGKSLTNVEK 11.9

DKGVAVAVASAEDIDAANNER 10.8

KKHMLCVNWLLSEKPLDLQTQLALGFLDHLMLGTPASPLR 10.8

DEPCSK 10.0

Peptides identified for AtPreP2

VLSEYLDMFDASPARDSSK 17.6

VRVSGGAYGGSCDFDSHSGVFSFLSYRDPNLLK 12.7

VSEEFISECKSK 11.9

VEELVMNTLRK 11.6

EPIYVPTEVGDINGVKVLR 11.2

LLSAASRGLNGQFSRLSIR 10.4

EPIYVPTEVGDINGVKVLR 10.1
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1.8 mM KH
2
PO

4
, pH 7.3) and lysed by addition of 0.5 mg ml–1 lys-

ozyme and 10 µg ml–1 DNase I followed by sonication for 3×30 s. The
lysate was centrifuged for 20 min at 15,000×g and filtered through a
0.2 µm membrane. The supernatant was loaded onto a GSTrap™ FF
1 ml column (Amersham Biosciences) equilibrated with PBS buffer.
AtPreP2 was eluted after on-column cleavage with PreScission™ Pro-
tease according to the manufacturer’s instructions (Amersham Bio-
sciences). The eluted AtPreP2 was applied to a Superdex™ 200 h 10/
30 column (Amersham Biosciences) equilibrated with 20 mM HEPES-
KOH, 10 mM MgCl

2
 (pH 8.0). The protein content of eluted fractions

from GSTrap FF and Superdex 200 HR10/30 was analyzed by 12%
SDS–PAGE in the presence of 4 M urea (Laemmli 1970) and stained
with silver.

Proteolytic activity of the recombinant AtPreP2

The proteolytic activity of the recombinant mature AtPreP2 was
investigated against the mitochondrial presequence derived from the
F
1
β-subunit of the N. plumbaginifolia ATP synthase, N

5.7
pF

1
β(2–54)-

hsl (Ståhl et al. 2002), and a chloroplastic transit peptide derived from
the small subunit of Rubisco from N. tabacum, SStpNt (Moberg et al.
2003). The proteolytic reaction contained 1.0 µg of the recombinant
mature AtPreP2 and 1 µg of either N

5.7
pF

1
β(2–54)-hsl or SStpNt in the

reaction buffer containing 20 mM HEPES-KOH (pH 8.0) and 10 mM
MnCl

2
. Degradation was performed for 50 min at 30°C and the reac-

tion was stopped by the addition of Laemmli sample buffer. o-
Phenanthroline (10 mM) was added and pre-incubated with the reac-
tion mixture for inhibition studies. For the detection of N

5.7
pF

1
β(2–

54)-hsl, samples were analyzed on 10–20% Tris-tricine gels (Bio-Rad,
Sundyberg, Sweden) and stained with Coomassie brilliant blue. For
the detection of SStpNt, samples were subjected to 12–20% SDS–
PAGE in the presence of 4 M urea and immunological cross-reactivity
was analyzed by Western blotting with an antibody raised against
SStpNt followed by detection with horseradish peroxidase (HRP)-
conjugated secondary antibodies. Point mutations in wild-type SStpNt
were generated by Quick change site-directed mutagenesis (Stratagene),
and overexpression and purification of mutants were carried out as
described earlier by Moberg et al. (2003). For the detection of SStpNt
and its mutant in Fig. 3, samples were analyzed on 10–20% Tris-tri-
cine gels (Bio-Rad) and stained with Coomassie brilliant blue.

In order to identify intermediate proteolytic fragments of the F
1
β

presequences generated by AtPreP1 and AtPreP2, 2 µg of the
N

5.7
pF

1
β(2–54)-hs1 peptide was incubated with 0.3 µg of the respec-

tive protease in degradation buffer for 30 min at 30°C. Recombinant
AtPreP1 was purified as described earlier by Moberg et al. (2003). The
samples were analysed as described before. We also investigated
cleavage of a fluorescent peptide, P1 (Ståhl et al. 2002). The degrada-
tion assay contained 0.3 µg of AtPreP1 or AtPreP2 and 20 µM of P1
(Pep Tag Protease assay) in degradation buffer. Degradation was car-
ried out at 30°C for 1 h before 80% glycerol was added. The samples
were analyzed directly on a 1% agarose gel, and the fluorescent pep-
tides were visualized by UV light.

In vitro import of the AtPreP2 precursor into mitochondria and

chloroplasts

The putative AtPreP2 precursor protein was synthesized in a
coupled transcription/translation reticulocyte system (Promega, SDS
Biosciences, Falkenberg, Sweden) in the presence of [35S]methionine.
Potato mitochondria were isolated and import experiments were per-
formed as described by Von Stedingk et al. (1997). For the import
reactions, the AtPreP2 precursor was incubated with isolated mito-
chondria for 20 min at 25°C. Chloroplasts were isolated from spinach
leaves and import experiments were performed according to Bruce et
al. (1994). For the import reactions, the AtPreP2 precursor was incu-

bated for 25 min at 25°C. Dual import was carried out with isolated
spinach mitochondria and chloroplasts as described by Rudhe et al.
(2002).

Transient expression of AtPreP2–GFP fusion constructs in tobacco

protoplasts

The in vivo targeting properties of the targeting peptide of
AtPreP2 were investigated using GFP as a reporter gene. One hundred
and fifty-five N-terminal amino acids of AtPreP2 were fused in-frame
to GFP in the AtPreP2–GFP fusion construct using the primers 5′prep2
(5′-agatctGCCGGAGAAAATATTCCG-3′) and 3′prep2gfp (5′-ggtacc-
ATCCTTCGGAGGAGTCCTG-3′). The PCR product was directly
cloned into a TOPO zero-blunt vector (Invitrogen) and digested with
BglII and KpnI. The digested fragment was gel extracted and cloned
into the pTZ19U-derived vector between the EN50PMA4 promoter
and GFP (Duby et al. 2001). The expression cassette was transferred
into a pBI101-derived vector (Clontech, CA, USA) for Agrobacterium-
mediated transient expression. All constructs were verified by
sequencing.

Protoplasts were prepared from leaves of N. tabacum cv. SR1
(Maliga et al. 1973) and transformed by electroporation as described
by Lukaszewicz et al. (1998). Protoplasts were incubated in culture
medium with 400 nM Mitotracker Red CM-H2Xros (Molecular
Probes, Eugene, OR, USA) for 40 min and washed three times before
confocal analysis. Confocal microscopy was performed with a Bio-
Rad MRC-1024 laser-scanning confocal imaging system. For the
detection of GFP, excitation was at 488 nm and detection was between
506 and 538 nm. Mitotracker staining was detected between 589 and
621 nm with excitation at 568 nm. Chloroplast autofluorescence was
detected between 664 and 696 nm with excitation at 488 nm.

Double chloroplast isolation for mass spectrometric analysis

Arabidopsis thaliana was grown on 0.8% agar in Magenta boxes
at 18°C and 170 µE fluorescent with incandescent lights. Plants were
harvested before flowering at 21–22 d by cutting the green leaf tissue
with scissors above the level of the agar, thus avoiding the roots.
Chloroplasts were isolated using a method adapted from Aronsson and
Jarvis (2002). In brief, the plants were chopped with a razor blade in
an ice-cold dish containing grinding buffer (GB; 50 mM HEPES,
330 mM sorbitol, 1 mM MgCl

2
, 1 mM MnCl

2
, 2 mM EDTA, pH 7.3).

The chopped plants were treated with a Polytron using a 13 mm rotor for
2–3 s. The brie was filtered through a layer of Miracloth (Calbiochem,
CA, USA) supported by two layers of cheesecloth. The brie was
returned to the Polytron with fresh GB and the process repeated a total
of five times. The combined filtrates were centrifuged at 250×g for
6 min. The supernatant was removed and the pellets resuspended in
import buffer (IB; 50 mM HEPES, 330 mM sorbitol, pH 8.0) using a
soft natural bristle paint brush. The suspended chloroplasts were lay-
ered on top of a 50% Percoll gradient and centrifuged at 3,500×g for
15 min. The lower intact chloroplast band was collected, diluted 3-fold
with IB, and centrifuged at 250×g for 6 min. The pellets were
resuspended in fresh IB and layered on top of a second 50% Percoll
gradient. The bottom layer was isolated as before and made up to a
final chlorophyll concentration of approximately 1 mg ml–1 in IB, and
stored at –80°C.

Total chloroplast protein tryptic digestion

Frozen chloroplast pellets were resuspended in ice-cold 90%
acetone and returned to –20°C for 1 h. The precipitated protein was
collected by centrifugation at 20,000×g, dissolved in 6 M guanidine
and incubated at 60°C for 1 h. The solution was diluted to 1.0 M
guanidine-HCl with 50 mM Tris, 1 mM CaCl

2
 and sequencing grade,

modified trypsin (Promega) was added at a level of 1 : 50 trypsin :
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protein. The sample was rotated at 37°C overnight. The following day,
a second aliquot of trypsin was added and digestion continued for
another 4 h at 37°C. The digest was reduced by addition of 10 mM
dithiothreitol (DTT) and heated at 60°C for 1 h. This trypsin digest was
then clarified by centrifugation at 20,000×g to remove insoluble pro-
tein. The peptides were desalted with a C18 Sep-Pak (Waters, Milford,
MA, USA), eluted with acetonitrile, and concentrated in a SpeedVac to
a final volume of 100–200 µl.

One- and two-dimensional LCQ tandem mass spectrometric analysis

The purified protein digest was subjected to either one- or two-
dimensional capillary/nano HPLC ESI-MS/MS equipped with an
electrospray source LCQ™Deca XP (Thermo Finnigan, NJ, USA). In
the one-dimensional analysis, the experiments were performed on an
Ultimate HPLC (LC Packings, CA, USA) using a 150 µm i.d.×15 cm,
300 Å 5 µm C

18
 packing (VYDAC, Southboro, MA, USA) for separa-

tion using a linear gradient from 100% solvent A [water : acetonitrile :
formic acid, 95 : 5 : 0.5 by vol.)] to 100% solvent B [water :
acetonitrile : acetic acid, 30 : 70 : 0.5). The eluate was analyzed by a
LCQ Deca XP mass spectrometer with dynamic exclusion and data-
dependent MS/MS enabled. Typically, multiple injections were made
with scanning over narrow mass ranges to increase peptide detection.
In the two-dimensional analysis, the purified protein digest was
injected onto a strong cation exchange column. Fractions were eluted
from the SCX column using NH

4
OAc to a C

18
 trap. The trap was then

backflushed to a 150 µm i.d×75 mm. C
18

 column (VYDAC) where the
reverse phase separation was conducted with a linear gradient from
100% A to 100% B. The eluate was analysed by electrospray MS/MS
with dynamic exclusion and data-dependent MS/MS.

Protein assignment of DTA files

The MS/MS spectra were analyzed using the commercial algo-
rithm, Mascot (Matrix Science, UK) using the most up to date A.

thaliana database (release date: January 22, 2004 from TIGR, Rock-
ville, MD, USA).

Semi-quantitative RT–PCR

Total cellular RNA was extracted from 100 mg of 3-week-old
seedlings and leaves, shoots, roots, flowers and siliques of mature A.

thaliana plants using plant RNA extraction reagent (Invitrogen) and
was treated with RNase-free DNase (Amersham) using an RNAeasy
column (Qiagen, West Sussex, UK). Cross-reactivity of the AtPreP1-
specific and AtPreP2-specific primers was tested using AtPreP1 and
AtPreP2 cDNAs. No PCR product was detected when AtPreP1-
specific primers were applied on the cDNA of AtPreP2, and AtPreP2-
specific primers were applied on the cDNA of AtPreP1, indicating the
specificity of the PCR primers. The number of cycles for quantitative
RT–PCR was carefully optimized with actin-specific primers as an
internal control using 15, 20 and 25 cycles. Primers were designed
from the exon–exon boundary encompassing an intron in order to
discriminate genomic contamination. RT–PCR, including reverse tran-
scriptase and 25 cycles, was carried out using the Titan One Tube
RT–PCR System (Roche) on 125 ng of total RNA. The primer set used
for AtPreP1 was 5′rtprep1, 5′-AGATCTCAGTAGCAGTCTCCG-
CCG-3′ and 3′rtprep1, 5′-GTGGAATCCTTCGGAGGAGTT-3′; for
AtPreP2 it was 5′rtprep2, 5′-AGATCTGCCGGAGAAAATATTCCG-3′
and 3′rtprep2, 5′-TGGAATCCTTCGGAGGAGTC-3′; and for actin it
was 5′rtactin, 5′-GGAACTGGAATGGTGAAGGCT-3′ and 3′rtactin, 5′-
CAGAATCGAGCACAATACCGG-3′. No PCR product was detected
when reverse transcriptase was eliminated from the reaction. The RT–
PCR products were analyzed by 2% agarose gel electrophoresis in the
presence of ethidium bromide.

Evolutionary studies

AtPreP1 and AtPreP2 were BLASTed against embryophyte gene
families from the TAED database (Liberles et al. 2001, Roth et al.
2005) and against protein sequences in GenBank. The EST collection
in GenBank was then subjected to BLAST searching and 164 unique
ESTs from 42 species were identified. These ESTs were manually
combined into species-specific ESTs where no ambiguity existed, a
multiple sequence alignment calculated using POA (Lee et al. 2002)
and a phylogenetic tree calculated using Mr. Bayes (Huelsenbeck and
Ronquist 2001) (Fig. 7). From this tree, AtPreP1 and AtPreP2 clus-
tered in a Brassicaceae-specific group.
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