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We report a general bound for the efficiency of polarization or coherence transfer between quantized
states under unitary transformations. This bound is more general than the so-called universal bound on
spin dynamics [O. W. Sgrensen, J. Magn. Reson. 86, 435 (1990)] that applies only to transformations
between Hermitian states. The new bound on transfer efficiency under unitary transformations between
general non-Hermitian operators depends exclusively on the singular values of the matrix representations

of these operators.
PACS numbers: 33.25.+k, 42.50.—p, 76.60.-k, 76.70.-r

Design or evaluation of experimental schemes for trans-
fer of coherence or polarization between states in quantized
systems requires a clear understanding of which regions of
operators in Liouville space are interconvertible by avail-
able propagators. This not only involves insight into upper
limits for the efficiency of transfer from one state to another
but is also related to conservation laws (or constants of
motion) of the quantum dynamics. Furthermore, in exper-
imental coherent spectroscopy it is important to have trans-
formation of high efficiency because that is reflected in the
sensitivity of the experiment. Recently, attempts in this
direction have been undertaken in nuclear magnetic reso-
nance (NMR) spectroscopy; however, attention has mainly
been devoted to transformation between Hermitian oper-
ators in nondissipative systems using unitary transforma-
tions [1]. In many physical systems these simplifications
fit the experimental circumstances because of the Hermitic-
ity of physical observables, the different time scales ap-
plying for nondissipative and dissipative (e.g., relaxation)
quantum evolution, and the fact that relevant Hamiltonians
are Hermitian, leading to unitary propagators. Although
so far addressed primarily in relation to NMR, determina-
tion of bounds on quantum dynamics is relevant in several
disciplines of chemistry and physics [2] including quan-
tum optics. We mention that progress in coherent opti-
cal spectroscopy [3] with ultrashort laser pulses [4] opens
up for optical analogs to NMR multiple-pulse sequences
to which bounds on coherence or population transfer are
of interest. As another example, establishment of upper
limits for polarization transfer efficiency is highly rele-
vant for “hybrids” between optical and magnetic resonance
spectroscopy [5]. Finally, bounds on quantum dynamics
are also directly applicable in multidimensional microwave
Fourier transform spectroscopy [6].

The so-called universal bound on spin dynamics and
its multidimensional variants describe bounds on the
regions of operators in Liouville space being interconvert-
ible by unitary transformations [1]. For unitary transfor-

0031-9007/95/74(15)/2921(4)$06.00

mation between Hermitian operators in finite spin sys-
tems it has been shown that (i) only states with identi-
cal eigenvalues can be interconverted completely, (ii) the
accessible region is significantly smaller than predicted by
considering conservation of the norm of the state vector
as the only bound on spin dynamics, and (iii) from knowl-
edge of maximum transfer efficiencies and transformation
propagators it is possible to design optimized experimen-
tal schemes [1,7].

In this Letter we present a generalization of this the-
ory to include unitary transformations between operators
which are not restricted to be Hermitian. The practical
usefulness of such a bound is a consequence of the fact
that a pair of off-diagonal elements of the (Hermitian)
density matrix o;; and o j; evolve with eigenfrequencies of
opposite sign under the free-precession Hamiltonian and
rotations about the symmetry axis z. Hence such compo-
nents can be separated by a complex Fourier transforma-
tion or appropriate z rotations like phase cycles or series
of pulsed field gradients [8,9]. In other words, the new
bound describes the limits of unitary transformations of
individual non-Hermitian operators of the Hermitian den-
sity operator. Within, for example, NMR this bound is
of considerable practical value, e.g., for optimization of
multidimensional liquid-state NMR experiments employ-
ing pulsed field gradients [9], useful for the suppression
of disturbing solvent signals [10].

A general entry to the problem is given by the
transformation

UBUY =aA + 0, Tr{AtQ} = 0, e))

where U is a unitary propagator (i.e., U~' = UY) serving
transformation between the initial and desired final opera-
tors B and A, respectively. Obviously, the coefficient a is
given by

_ Tr{uBtUTA} 2
Tr{AtA}
© 1995 The American Physical Society 2921
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The problem of transfer efficiency is equivalent to deter-
mining the range of a.

For transformation between Hermitian operators, the
limits for transfer of polarization or coherence from spin
state B to spin state A depend on the eigenvalues A; of
these operators through the relations [1]

— Tr{UBTU‘rA}] X AMAT 3
max { Tr{atA} 1 7 (AM)?” (3a)
wem _ .| THUBTUA}Y] 30, Ap_in AP
ot = mjo| Tr{at4} - S Y
with the eigenvalues sorted in descending (or ascending)
order; e.g, Al = Af = ... = Adand A=A =... =

AB. The upper limit may readily be proven by rewriting
the trace according to

TH{UBTUTA} = (A%A4 .- A%

AB

UI 2 U/n2 1
(o Vi [ ok .

Ul o (UL

n

where we introduced the diagonalizations and eigenvalue
orderings A = U,AAU} and B = UzAPU} along with
U = U,IUUB (all matrices are unitary). Since U’ is
unitary the n X n matrix with elements IU{jl2 in Eq. (4)
is doubly stochastic. (A square matrix S is said to be
stochastic if it has non-negative entries and all its row
sums are equal to 1; S is denoted doubly stochastic if §
and ST are stochastic.) Any doubly stochastic matrix S
other than the unity matrix 1 will contain two nonzero
entries s;; and s with { > k and j < [. Hence, it is
possible to define another doubly stochastic matrix S5 by

S11 51 St “e Sin
Ski1 o Sky + 6 Skl — o e Skn
Se = | : : B
Sil sij — O s+ 6 o Sin
Snl Snj Snl Snn
(5)

with 8 = min[s;;, siy] > 0. For the two real vectors ® =
(p1¢p2--- ¢p,) and Il = (773 --- 7,), with the orderings
b1 =d,=---=¢, and w1y =7, = -- = 7, one obtains

DS = PSS + 8(pi — 1) (m — 7j) > OSTIT.

©)
This shows that
msax[d)SHT] =D ¢imi, @)
i=1
where the maximum is obtained using § = 1. With

2922

Eq. (7) at hand it follows from Eq. (4) that
mglx[Tr{UBJr UTAY] = D ALAS. (8a)
i=1
The maximum in Eq. (8a) is assumed when U’ = 1 (i.e.,
U= UAU);), thereby establishing the proof of Eq. (3a).

For the lower limit afa™ the proof is analogous and

min[TH{UBTUTA}] = DAL AL (8b)
i=1

1

It holds that aha™ = —gHem when for the ordered
eigenvalues At = A;%or A = A7 forall i.

As stated in the introduction, it is of considerable
interest to establish similar bounds on the quantum
dynamics associated with transformation between non-
Hermitian operators. In this case singularity of the initial
and/or desired final states prevents the use of similarity
transformations to determine their eigenvalues. However,
for any complex n X m matrix M there exists unitary
matrices 7 and V of dimensions n X n and m X m,

respectively, and a real diagonal n X m matrix 3,

o 0 0

(% 0 . |0 o - 0
E_(0 0)’ e e T A

0 0 Tk

with oy = 0, = -+ = o > 0 such that
M =713Vt (10)

Equation (10) is known as the singular value decomposi-
tion (SVD) of M [11].

Using the singular value decompositions A = T4 34 Vj
and B = T8 Vl;r for the general complex n X n matrices
A and B one readily obtains

To{UBtUTA} = TH(VAUV) SE(T{UTH 34}, (1)
where the traces can be complex. It follows that

mla}x[ITr{UB*UTA}I] = rg(la}/x[ITr{XEBYfEA}I], (12)

where X and Y are unitary matrices. The inequality
holds because the right-hand side has an additional degree
of freedom compared to the expression in Eq. (11).
Equation (12) can be evaluated in the following way:

Tr{(X — V) 35X — v)' 3%} =
Tr{XSExT34} + Tr{r3fyts4}
— 2Re(TH{X 2By sSA) =0, (13)
where Re denotes the real part. This implies that
rr)}’z}x[Re(Tr{XZBY*EA})] = mzax[Tr{ZEBZJ‘EA}] (14a)
or
rgayx[lTr{XEBYJ’EA}I] = mZaX[Tr{ZZBZJ‘EA}], (14b)

where Z is unitary. The equivalence of Egs. (14a) and
(14b) is due to the fact that all diagonal elements of the
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product matrix through phase adjustments in X can be
made real and positive. In fact, the equal sign in Eq. (14)
holds because the trace on the right-hand side is always
positive and a special case of the one on the left-hand
side. It corresponds to the Hermitian case, and in analogy
to Eq. (3) it is now possible to establish a generalized
bound in terms of Egs. (1), (2), and (9),

- (15)

where k' denote the smallest of the dimensions for the
ordered singular value matrices 34 and 2p and k the
dimension of 3,4. In the following we let the equal sign
in Eq. (15) denote the SVD bound on spin dynamics, i.e.,

k' A B

SVD _ 4i=19i i 16
max k A > ( a)
,'=1(0'i )?
SVD _ SVD
Omin = " %max - (16b)

In contrast to the bounds on unitary transformation be-
tween Hermitian operators where the boundaries can al-
ways be achieved there is no guarantee that the boundaries
in Eq. (16) can be achieved. Applied to Hermitian opera-
tors the general bound in Eq. (16) yields the same result
as the Hermitian bound provided the numerators in Eq. (3)
are invariant to absolute-value formation of the individual
eigenvalues and reordering in descending (or ascending)
order.

The following coherence transfer processes in hetero-
nuclear Iy S spin—% systems with N = 1, 2, and 3 illustrate
all aspects of the spin dynamics bounds discussed:

U2F, S, Ut = aF, + Q, a7
U2F,S_U' =aF_ + Q, (18)

Us, Ut =aF, + 0O, (19)

US_U' =aF_ + Q, (20)

where F, = SV, I;p and S, describe angular momentum
operators (I = I, * il,, S+ = S, * iS,) for the / and S
spins, respectively. For these four examples all ap.,x =
—Amin SO wWe only discuss amax. In addition, am,x and amin
are invariant to the substitution of any x by y or z and any
— by +.

Table I contains alXl®™ and aSYP for the transfer
processes in Egs. (17)—(20) supplemented by the norm
bound af®™ = /Tr{BTB}/Tr{ATA} predicted by con-
servation of the norm of the state vector alone [i.e.,
Tr{(UBUY)t (UBU')} is independent of U]. Table I
confirms the common finding that the norm limit is
achievable for two-spin IS systems or when the eigen-
values of the two (Hermitian) operators in question are
identical. In the other cases the norm limit is unachiev-
able. Even the SVD bound can predict too high an
efficiency of transfer between non-Hermitian operators
as is the case for the IS and I3S processes of Eq. (20).
That follows from multiple application of the Hermitian
bound to transfers between the Hermitian linear combi-
nations (B + BY), i(B — Bt) and (A + AT), i(A — A') of
operators A and B:

4aT{UuBtUTA} = TH{UB' + B)Ut(A4 + AT)}
—iT{UuB' + ByUti(A — AT)}
—iTr{Uui(B" — ByUut(a + A)}
- Tdui(Bt — ByUti(a — AY)}, @D

implying

4m3x[|Tr{UBfU*A}|] = max [(THv BT + B)vI@A + AP + [Te{v(B' + B)vTi(a — A1)}])'/?]
+ max [(Twi(Bt — Bywt(@ + AN + [Tfwi(Bt — Bywti(a — AHYP)/?]. (22)

TABLE 1.

spin systems (N = 1, 2, and 3) determined by the Hermitian (a

Maximum transfer coefficients amax for typical UBUT = aA + Q coherence transfer processes in heteronuclear IyS
Herm) the SVD (a3y2), and the norm (aio™) bound. For transfer

between non-Hermitian operators the upper limit of Eq. (23) is included in brackets (see text).

IS LS IS
Eq. B A afgr  aRR  amy  afgr el emy  ahgr e apy
(17) 2F, S, F, 1 1 1 1 1 1 1 1 1
(18)  2FS. F- [ 1 1 (11 - 1 (1] 14243 1
(19) s, F. 1 1 1 ! ! il ! ! il
(20) S F_ [1] 1 1 4 £ N 4 3243 -
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When the operators (A + AN, i(A — A1), and [(A + A1), i(A — A1)] fulfill the same commutator relations as the angular
momentum operators I, I,, and I, linear combinations (A + A") cos® + i(A — A1) sinf have the same eigenvalues
independent of 8. With these stipulations Eq. (22) can be simplified,

4m(51x[|Tr{UBTUTA}|] = m‘z/lx[ITr{V(BJ’ + B)via + ahH] + mvgx[lTr{Wi(Bf - Bwta + aAHy],

where the two terms on the right-hand side are identical
when also (B + Bt) and i(B — B') have the same eigen-
values. The bound of Eq. (23) is included in brackets in
the Hermitian column of Table I for the transfer processes
of Egs. (18) and (20). A final comment on Table I is that
the SVD limit for Eq. (18), in fact, has been achieved for
N =1 and N = 2 and appropriate pulse experiments de-
veloped in heteronuclear liquid-state NMR using pulsed
field gradients [9].

To summarize, we have generalized the universal bound
on spin dynamics to include unitary transformations be-
tween non-Hermitian operators in Liouville space. This
extension will have important consequences for design and
evaluation of experimental techniques in wide ranges of
coherent spectroscopy. In particular, it is foreseen that
the generalized bounds will find immediate application for
the design of sensitivity-enhanced NMR experiments us-
ing pulsed field gradients for artifact and solvent signal
suppression.
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