70 research outputs found

    Guidelines for Modeling and Reporting Health Effects of Climate Change Mitigation Actions

    Get PDF
    Background: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. Objective: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. Methods: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. Results: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. Discussion: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice

    Human Missions to Mars Orbit, Phobos, and Mars Surface Using 100-kWe-Class Solar Electric Propulsion

    No full text

    RasGAP mediates neuronal survival in <em>Drosophila</em> through direct regulation of Rab5-dependent endocytosis.

    No full text
    The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in RasGAP (vap), a Ras GTPase-activating protein, lead to age-related brain degeneration in Drosophila. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint co-localize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is critically dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint

    A bioassay for studying behavioural responses of the common bed bug, Cimex lectularius (Hemiptera: Cimicidae) to bed bug-derived volatiles.

    Get PDF
    The common bed bug, Cimex lectularius (Hemiptera: Cimicidae), has recently re-emerged in increasing numbers, distribution and intensity of infestation in many countries. Current control relies on the application of residual pesticides; but, due to the development of insecticide resistance, there is a need for new tools and techniques. Semiochemicals (behaviour and physiology modifying chemicals) could be exploited for management of bed bugs. However, in order to identify semiochemicals that can be utilised in monitoring or control, a suitable olfactometer is needed that enables the study of the responses of bed bugs to volatile chemicals. Previous studies have used olfactometers that do not separate olfactory responses from responses to physical contact. In this study, a still-air olfactometer was used to measure behavioural responses to different bed bug-derived volatiles presented in an odour pot. Bed bugs were significantly more likely to visit the area above the odour pot first, and more frequently, in the presence of volatiles from bed bug-exposed paper but not in the presence of volatiles from conspecific bed bugs. Bed bug activity was found to be dependent on the presence of the volatiles from bed bug-exposed paper, the time during the scotophase and the sex of the insect being tested. The still-air olfactometer could be used to test putative semiochemicals, which would allow an understanding of their behavioural role in bed bug ecology. Ultimately, this could lead to the identification of new semiochemical tools for bed bug monitoring and control

    The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly

    No full text
    Focal adhesion (FA) disassembly required for optimal cell migration is mediated by microtubules (MTs); targeting of FAs by MTs coincides with their disassembly. Regrowth of MTs, induced by removal of the MT destabilizer nocodazole, activates the Rho-like GTPase Rac, concomitant with FA disassembly. Here, we show that the Rac guanine nucleotide exchange factor (GEF) Sif and Tiam1-like exchange factor (STEF) is responsible for Rac activation during MT regrowth. Importantly, STEF is required for multiple targeting of FAs by MTs. As a result, FAs in STEF-knockdown cells have a reduced disassembly rate and are consequently enlarged. This leads to reduced speed of migration. Together, these findings suggest a new role for STEF in FA disassembly and cell migration through MT-mediated mechanisms
    • …
    corecore