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Chapter 13

Modelling Temporal Behaviour in Complex

Systems with Timebands

Kun Wei, Jim Woodcock, and Alan Burns

13.1 Introduction

Complex real-time systems exhibit dynamic behaviours on many different time lev-

els. For example, circuits have nanosecond speeds for computation in a component,

whereas slower functional units may take seconds to achieve their goals; moreover,

the involvement of human activities related to calendar units such as days, weeks,

months and even years may take more time. To cope with a wide range of time

scales, many approaches [10, 23] have introduced time granularity, so that system

specifications and requirements could be naturally described within the best suit-

able time granularity. However, they usually transform or project all descriptions

into the finest granularity in the end. This results in cumbersome formulae and fails

to recognise the distinct role that time is taking in the structuring of the system.

For example, it is unnecessary to measure the start of a meeting in a millisecond

time scale. In fact, most people are usually tolerant of starting a meeting five min-

utes early or late. Traditional approaches dealing with time granularity sacrifice the

separation of concerns in the analysis of complex real-time systems.

To overcome the above weakness when traditional approaches model dynamic

temporal behaviours of a system, Burns and Hayes [5] propose a timebands model

in which a system is decomposed to reveal different behaviours in different time

bands. Apart from defining time bands by granularities, a key aspect of the time-

bands framework is that events are considered to be instantaneous in a band, and

then in a finer band they can be mapped into activities that have duration. For ex-

ample, to express a statement that every month we have a meeting which lasts one

hour, we model the meeting as an instantaneous event in a month band and subse-

quently map it into an activity in an hour band. This clearly allows dynamic temporal

behaviours to be partitioned, but not to be isolated from each other. The mapping
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between different bands leads to more distinct features. For example, precision is in-

troduced to represent the measure of accuracy of events within a band; accordingly,

events are simultaneous only if, when viewed from a finer band, their corresponding

activities are within the precision. Activities may overlap even though their corre-

sponding events in a coarser band are well-ordered. As a result, a formal model

of the timebands framework is needed to allow consistency to be asserted between

different temporal descriptions that are specified in different time bands.

The concept of time granularity has been well defined in the literature [8, 16]

and many approaches have focused on time granularity in different areas of com-

puter science, such as temporal databases, data mining, formal specification and so

on. General speaking, the basic idea of time granularity is to partition a universal

time domain into differently-grained granules, and a granularity is a set of indexed

granules, any one of which is a set of time instants. The choice for time domain is

typically between continuous (dense) and discrete. We focus on developing a natural

specification language which is able to describe the behaviour of a real-time system

whose components engage in different time scales. In other words, we attempt to

embed time granularity in a logical specification language. However, adding time

granularity to a formalism may give rise to semantic issues like problems of assign-

ing a proper meaning to statements with different time domains and of switching

from one domain to a coarser/finer one. So far, most work has been focused on

embedding time granularity in temporal logic languages. For example, early explo-

ration [10, 23] consists of translation mechanisms that map a formula associated

with different time constraints to the finest granularity. They [7] later revise the sim-

ple approach by extending the basic logic language with contextual and projection

operators, so that the enhanced semantics can express more general and complete

properties. Subsequently, more work [9, 12] uses linear time logic to model and

reason about time granularity.

For manipulating the unique feature of mapping events into activities, process

algebra approaches are potential candidates for formalising the timebands model.

However, there is little work on embedding time granularity in process algebra lan-

guages, though there have been many papers [19, 28, 29] on timed process alge-

bra approaches. To formalise the timebands model, we have proposed a new timed

model of CSP, called timed CSP with the miracle (TCSPM ), which is an extension to

timed CSP [28] but whose semantics is based on Unifying Theories of Programming

(UTP) [15]. This new model uses a complete lattice with respect to the implication

order (or the reverse order of the refinement order), which is rather different from

previous models such as the complete partial order of CSP [14, 25, 28]. The seman-

tics of the timebands model is built upon TCSPM , fully applying the miracle (the top

element of the complete lattice) to express those brand-new features such as simul-

taneous events and mappings. In this chapter, we use a mine pump example to show

how naturally to verify different temporal properties using the timebands model at

different time scales. The idea and informal description of the timebands framework

has been given in [5], and the formal semantics of the framework is developed in

this chapter.

The chapter is structured as follows. We begin with a brief introduction of

TCSPM in Sect. 13.2. Section 13.3 presents how to use the new timed model to
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formalise the timebands model and how to formally express these distinct features.

Then, by means of a rather complex example, we demonstrate how significantly the

timebands model contributes to describing a complex real-time system with multi-

ple time scales in Sect. 13.4. Section 13.5 concludes this chapter.

13.2 Timed CSP with the Miracle

Recently, we have proposed a new timed model [32] of Circus [26, 33] which is a

combination of CSP, Z [34] and the refinement calculus so as to define both data

and behavioural aspects of a system. In fact, our timed Circus is a compact exten-

sion of Circus in that it inherits only the CSP part in order to reduce the difficulty

of implementing Circus programs in practice. Although it does not have the same

capability of handling data as the original Circus language does, our timed Circus

preserves local variables for each process that still contains a considerable power to

express the change of states. To formalise the timebands model, we further simplify

timed Circus to TCSPM by adopting discrete time.

Simply speaking, TCSPM can also be considered an extension to Schneider’s

timed CSP [28], but its UTP-style semantics uses a complete lattice in the impli-

cation ordering which is different from the complete partial order of timed CSP.

With the application of the miracle (the top element of the model), TCSPM turns

out to be able to express some surprising behaviours which, moreover, cannot be

described in timed CSP. Additionally, TCSPM violates some axioms of the standard

failures-divergences model of CSP, e.g., traces are not prefix closed any more.

In UTP, Hoare and He use the alphabetised relational calculus to give a denota-

tional semantics that can explain a wide variety of programming paradigms. Hence,

the alphabet of a process P in TCSPM consists of undashed variables (a, b, . . .) and

dashed variables (a′, x′, . . .). The former, written as inαP , stands for initial obser-

vations, and the latter as outαP for intermediate or final observations. The relation

is then called homogeneous if outαP = inαP ′, where inαP ′ is simply obtained by

putting a dash on all the variables of inαP . Thus, an observation in TCSPM is a

tuple consisting of tr, ref , ok, wait, t , v and their dashed counterparts, in which tr

and tr′ are timed traces, ref and ref ′ are refusals, ok is a boolean variable expressing

whether a process has started or not (ok′ whether the process has terminated or not),

wait′ denotes whether the process is in an intermediate state, t is the starting time of

the observation (t ′ is the finishing time), and v and v′ denote a set of local variables

of the process.

A timed trace is a sequence of timed events which are pairs drawn from Z
+ × �,1

e.g., 〈(1,pump.on), (3,pump.off )〉 is a timed trace. A refusal is simply a set of

events, other than a set of time events in timed CSP, since other variables can assist

in representing enough information of when those events are refused. The ok and

wait observations (and their dashed variables) describe whether a process is started

1� denotes the universal set of events.
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(or finished) in a stable state. If ok′ is false, the process diverges. If ok′ is true, the

state of the process depends on the value of wait′. If wait′ is true, the process is in

an intermediate state, otherwise it successfully terminates. Similarly, the values of

undashed variables represent the states of the process’s predecessor.

Except for the deadline and assignment operators, the syntax of TCSPM is similar

to the one of timed CSP, as described by the following grammar:

P :: = ⊤R | ⊥R | SKIP | STOP | a → P | P1;P2 | x :=A e | g&P |

P1 � P2 | P1 ⊓ P2 | P1 |[A ]|P2 | P \ A | WAIT d | P1 ⊲ {d}P2 |

P ◮ d | P1△{a}P2 | μX.P

13.2.1 Primitive Processes

The miracle ⊤R is the top element in the implication ordering, however it cannot be

executed since it expresses that a process has not started yet. Of course, an unstarted

process satisfies any requirement. The bottom element ⊥R is called Abort which

can do absolutely anything. The process STOP is deadlocked and its only behaviour

is to allow time to elapse. The process SKIP simply terminates immediately.

13.2.2 Sequential

The sequential composition P1 ;P2 behaves as P1 until P1 terminates, and then

behaves as P2. In the meanwhile the final state of P1 is passed on as the initial state

of P2. The prefix process a → P is able to execute the event a (a ∈ �) and then

behaves as P . This process can also be represented by a composition of a simple

prefix and P itself, written as (a → SKIP) ;P . The process g&P has a boolean

expression g, which must be satisfied before P starts.

The notation (x :=A e) represents that a process simply assigns the value of an

expression e to a process variable x, and any other variable in the alphabet A remains

unchanged. In practice, we often use a shorthand for the assignment operator. For

example, P(x + 1) is actually defined as (x := x + 1 ;P ).

13.2.3 Choice

The process P1 � P2 behaves either like P1 or P2, but the first event of which can

resolve the choice. Compared with this external choice, the internal choice P1 ⊓ P2

can also behave either like P1 or like P2, but it is out of control of its environment.

Both external and internal choices have indexed choices. For example, if I is a
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finite indexing set such that Pi is defined for each i ∈ I , written as �i∈I
Pi . The

indexing external choice is also used to define the input operator. For example, if c is

a channel name of type T and v is a particular value, the process c!v → P outputting

v along the channel c is equal to c.v → P . The inputting process c?x : T → P(x)

describes a process that is ready to accept any value x of type T , and it is defined as

�x∈T
c.x → P(x).

13.2.4 Parallel

The process P1 |[A ]|P2 is the process where all events in the set A must be syn-

chronised, and the events outside A can execute independently. The parallel process

terminates only if both P1 and P2 terminate, and it becomes divergent after either

one of P1 and P2 does so. An interleaving of two processes, P1 ||| P2, executes each

part independently and is equivalent to P1 |[ ∅ ]|P2.

13.2.5 Abstraction and Recursion

The hiding operator P \ A makes the events in the set A become invisible or internal

to the process. The process P1△{a}P2 behaves as P1, but at any stage before its ter-

mination the occurrence of a will interrupt P1 and pass the program control to P2.

The recursive process μX.P behaves like P with every occurrence of the system

variable X in P representing a recursive invocation. For example, to express a sim-

ple recursive process P = a → P , we have a monotonic function F , a variable X,

and an equation F(X) = a → X; and then P is actually represented by μX.F(X)

which stands for the least fixed point of the above equation.

13.2.6 Timed Operators

The delay process WAIT d does nothing except that it allows d time units to pass.

The timeout operator P1 ⊲ {d}P2 resolves the choice in favour of P1 if P1 is able

to execute observable (external) events by d time units, otherwise executes P2. This

operator is defined by the combination of the external choice and hiding operators:

P1 ⊲ {d}P2 = ((P1 ; e → SKIP) � (WAITd ; e → P2)) \ {e}

which uses the event e to resolve the external choice, if no external event happens

in P1 by d or P1 does nothing but terminates before d . Also, e is not included in the

alphabet of P1 and P2.
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The deadline operator ◮ is similar to the timeout operator, but it uses the miracle

to force that P must execute observable events by d :

P ◮ d = (((P ; e1 → SKIP) � (WAIT d ; e2 → STOP)) \ {e2}

� WAIT d ;⊤R) \ {e1}

where the role of e1 (e1 /∈ αP ) is to resolve both external choices when P quietly

terminates before d , and the event e2 (e2 /∈ αP ) is used to resolve the first external

choice if P does nothing when d is due. Of course, the miracle (⊤R) forces P to

execute external events, otherwise the whole process will behave like the miracle.

More detailed explanation of the deadline operator will be found in Sect. 13.2.9

after some algebraic laws are introduced. This is really a very strong requirement in

which there is no alternative but to meet the deadline, otherwise P will never start.

Note that our deadline operator is different from the one defined in timed CSP

which, in fact, indicates that a process becomes deadlocked if events cannot occur

by d . The deadline operator in TCSPM insists that the process will not start at all if

the deadline is missed. In other words, events in P must occur by d , or the process

behaves as ⊤R .

13.2.7 Refinement

Suppose that P1 and P2 have the alphabet A of variables. If every observation that

satisfies P1 also satisfies P2, it is expressed by ∀v : A • P1 ⇒ P2, or [P1 ⇒ P2]. Be-

cause the refinement order is the reverse order of implication, it can also be written

as P2 ⊑ P1. The miracle is an unstarted process so that its observation obviously

satisfies any other process in the model, i.e., [⊤R ⇒ P ] or P ⊑ ⊤R .

13.2.8 The Difference from Timed CSP

Although TCSPM inherits assumptions of timed CSP such as maximal parallelism

and maximal progress, the introduction of the miracle makes TCSPM different from

timed CSP in many aspects. The miracle itself is a very ‘strange’ process since

it can never be executed in practice. However, it is very useful as a mathematical

abstraction in reasoning about properties of a system. The semantics of ⊤R in

TCSPM is defined as follows:

⊤R = (tr ≤ tr′ ∧ t ≤ t ′ ∧ ¬ok) ∨ (wait ∧ ok′ ∧ II)

where II is called relational identity which simply means that all dashed variables in

the alphabet are equivalent to correspondingly undashed variables. The observation

of the miracle consists of two parts: the left part of the disjunction states that, since
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ok is false, its predecessor diverges and the miracle is in an unstable state; the second

one states that the miracle is waiting for its predecessor’s termination (e.g., wait is

true) but in a stable state (e.g., ok′ is true). However, in both cases, the miracle has

not started yet.

The miracle gives rise to some very strange processes, each of which violates

one of axioms of the standard CSP failures-divergences model. For example, we

combine the miracle with a simple prefix, and then get the following miraculous

process:

a → ⊤R =̂ R(true ⊢ tr′ = tr ∧ a /∈ ref ′ ∧ wait′ ∧ v′ = v) (13.1)

Let us concentrate on the expression after the symbol ⊢, which describes the

behaviour if a process starts from a stable state. The reader who is interested in R, ⊢

and proof is referred to [31, 32]. The process (13.1) states that, if the process starts

stably, then it will wait for interaction with its environment (wait′ is true), but never

actually perform any event (tr′ = tr) even if the event a has been offered (a /∈ ref ′).

This process violates an axiom of the CSP failures-divergences model [25, 28],

F3. (s,X) ∈ F ∧ ∃a ∈ Y • s � 〈a〉 /∈ traces⊥(P ) ⇒ (s,X ∪ Y) ∈ F

saying if at a state an event is not in the refusal set then the process is willing to

execute the event.

Another strange process is that the external choice of the miracle with a simple

prefix:

(a → SKIP) �⊤R = R(true ⊢ ¬wait′ ∧ tr′ = tr � 〈(t ′, a)〉 ∧ v′ = v) (13.2)

In an untimed model this process performs the event a and terminates immediately.

There is no state in which the process is waiting for the environment to offer a. It

simply occurs instantly; in other words, no empty trace exists for such a process.

Obviously, it violates another important axiom of the standard failures-divergences

model of CSP where traces are prefix closed. In our timed model, this process re-

veals more interesting features. Because there is no constraint on timing in (13.2),

the event a will occur when the environment is willing to interact with it. However,

there is still no state between the start of the process and the occurrence of a, or the

time before the occurrence of a has become invisible.

13.2.9 Distinct Features

The combination of the miracle and other operators can further assist us in under-

standing the role of the miracle. In fact, the key role of the miracle in a process is

that the program control should never meet the miracle if the process has started.
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This idea can be applies to intuitively get the following laws2:

L1. ⊤R ;P = ⊤R

L2. SKIP ;⊤R = ⊤R

L3. STOP � ⊤R = ⊤R

L4. SKIP � ⊤R = SKIP

L5. P ⊓ ⊤R = P

L6. P |[ {A} ]|⊤R = ⊤R

For example, the left part in L2 should not start and therefore behaves as ⊤R

since SKIP allows the program control to meet the miracle immediately if the pro-

cess starts. Similarly, the process in L4 must behave as SKIP to discard the miracle.

The process in L6 states that the parallel of the miracle with any process is the mir-

acle, because all processes engaged in the parallel must start together, however, the

miracle cannot start so that the whole parallel cannot too.

13.2.9.1 Deadline

The deadline operator in TCSPM is different from the one defined in timed CSP.

It can be used to specify a property that something must occur, rather than that

something should occur otherwise the process is deadlocked. For example, (a →

SKIP) ◮ 1 means that a must occur within one time unit, or the process will not

start if the deadline cannot be satisfied. An easy way to understand this property

is to note that the process will backtrack to the unstarted state if a cannot happen

within the deadline.

We can further clarify how the deadline operator works from its definition. For

example, there are three cases in which P ◮ d will behave: the first one is that

P executes external events before d , another two are that P does nothing by d

and P does nothing but terminates by d respectively. The first and third cases are

straightforward to implement in the definition of ◮ since the external events and e1

will resolve both external choices. We focus on the second case and use a simple

example to prove its correctness.

(WAIT 2) ◮ 1 = (((WAIT 2 ; e1 → SKIP) � (WAIT 1 ; e2 → STOP)) \ {e2}

� WAIT 1 ;⊤R) \ {e1}

= WAIT 1 ; (((WAIT 1 ;e1 → SKIP) � (e2 → STOP)) \ {e2}

� ⊤R) \ {e1}

= WAIT 1 ; ((e2 → STOP) \ e2) �⊤R

2These laws have been formally proved and the reader is referred to [31].
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= WAIT 1 ; (STOP � ⊤R)

= WAIT 1 ;⊤R

The result is very interesting. As our previous conclusion that a program control

should never meet the miracle during any execution, WAIT 1 ;⊤R actually means

that the process will behave like the miracle unless it can be interrupted before one

time unit. As a result, the above example proves that if a process cannot execute

external events by the deadline, it behaves as the miracle. In other words, if the

process can then it must do so.

13.2.9.2 Atomic Events

In modelling a complex system, it is very convenient to impose a collection of events

to happen together. For example, RAISE Specification Language (RSL) [13, 35] has

an interlock operator which can prevent the interlocked processes from communicat-

ing with other processes until one of them terminates. Of course, the communication

can take place between the locked processes if they are able to. Promela/SPIN [17,

18] can define atomic sequences which encapsulate a fragment of code to be exe-

cuted uninterruptedly and individually. In the interleaving of process executions, no

other process can execute statements from the moment that the first statement of an

atomic sequence is executed until the last one has completed. Unfortunately, to our

best knowledge, neither of the two operators has denotational semantics probably

because of the insufficient capability of current languages to express the property

that something must occur.

Such ‘atomic’ events can also be easily defined by the deadline operator with

well-defined denotational semantics. For example, setting the value of the deadline

as zero can make a process or an event become instant. For the sake of convenience,

we use the following abbreviations as a shorthand to represent instant events or

processes:

‡P =̂ P ◮ 0

P1‡P2 =̂ P1 ; (P2 ◮ 0)

a‡b =̂ (a → SKIP)‡(b → SKIP)

Here the instantaneity operator squeezes the ‘distance’ of events and processes to

zero. In addition, none of instant events can happen individually. Moreover, we can

define uninterrupted events by means of the instantaneity operator. For example,

(a → WAIT 1)‡(b → SKIP) means that a can happen only if b can even if there

is one time unit delay between them. Such events are extremely useful for dealing

with explicit clock-tick events in Sect. 13.3.3.
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13.2.10 Discussion

TCSPM is a discrete-time version of timed Circus, which is also considered an ex-

tension to timed CSP. Its denotational semantics is based on UTP by embedding the

theory of designs in the theory of reactive systems. More detailed introduction to its

semantics can be found in [31, 32]. To prove the correctness and consistency of the

model, we have done a shallow embedding [30] of the semantics of our timed Cir-

cus in the theorem prover PVS. The behaviours of our strange processes have been

proved by hand and also by PVS. The ongoing work is focusing on the operational

semantics of the timed model and the development of efficient tool support.

13.3 Semantics of the Timebands Model

In consideration of the nature of the timebands model, we intend to use TCSPM to

express its semantics. The newly explored process, the miracle, plays a crucial role

in the construction of the timebands model to link all time bands as a whole. First,

we use a lecture example to explain how to view a simple system in the timebands

model. Suppose that one week a lecturer has a lecture which takes two hours and

has a five-minute break. To model it, we define three time bands, Week, Hour and

Minute, which are given in an increasing finer order and illustrated in Fig. 13.1. In

Band Week, event lecture does not take any time to execute, but it is mapped into

activity L with duration in Band Hour. Furthermore, event break in activity L is

mapped into another activity B in Band minute. Thus, instead of mapping all events

or activities into the finest band, we use some key events (or signature events) to

link and integrate different bands into a whole. Meanwhile, the timebands model

preserves consistency and coordination of the system in the multiple time scales.

The timebands model is developed in a number of stages in this section including

time bands, granularity and precision, simultaneous events and durative activities,

and mappings between bands.

13.3.1 Time Bands

A system in the timebands model recognises a finite set of distinct time bands, and

it always has the highest and the lowest bands that give a temporal system boundary.

Each band is defined by a granularity, representing the basic unit of time in that band.

This is different from temporal logic approaches which can represent a possibly

infinite set of time bands.

The timebands model adopts discrete time, usually represented by non-negative

integers. A granule is simply a set of time points and a granularity is a mapping

G from integers to a granule. One healthiness condition [4] that granularity must

satisfy is

G1 : ∀i, j : Z | i < j ∧ G(i) �= ∅ ∧ G(j) �= ∅ • (∀t : G(i), u : G(j) • t < u)
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Fig. 13.1 Mapping between different time bands

which states that any two granules of a granularity have no overlap and the elements

of granules are ordered the same as their index order. A granule G(i) can be com-

prised of a single time unit, a set of contiguous units, or even a set of non-contiguous

units. For example, the bank holidays for 2009 in England, defined as a collection

of several days from different months, can be used as a granule.

Thus, the time bands in the lecture example can be defined as follows:

TBI = {Minute,Hour,Week}

Granularity(Hour,Minute) = {60}

Granularity(Week,Hour) = {7 ∗ 24}

The set TBI is a collection of the timeband identities. The function Granularity de-

fines conversion factors of different time bands’ granularities. These factors can be

multiple. For example, a year may have 365 days or 366 days. In addition, the func-

tion Granularity also satisfies ‘finer than’ relations of different time bands. A granu-

larity G is finer than a granularity H if for each index i, there exists an index j such

that G(i) ⊆ H(j). Conversion factors between two bands must be natural numbers,

and therefore time bands are not always comparable. For example, a week band is

not comparable to a month band.

13.3.2 Events and Precision

Events are instantaneous, but depend on which band they are defined. For exam-

ple, an event defined in the week band does not take any time to execute, however

it might take several hours in the hour band. Indeed, there are a few relationships



288 K. Wei et al.

between events within a band such as instant events defined in Sect. 13.2.9. Instan-

taneity is the strongest constraint that is used especially to link different time bands

via events and activities.

In specification of a system, events may cause an immediate response. For exam-

ple, we consider such a requirement like ‘when the fridge door opens the light must

come on immediately’. It actually means that the two events, door.open and light.on,

occur simultaneously but with an order. That is, the response is within the precision

of the band. Precision, representing the measure of accuracy of events within that

band, can only be expressed using the granularity of finer bands. Accordingly, two

simultaneous events must, when viewed from a finer band, be within the precision of

the current band. In respect to the finite number of time bands in the model, the finest

(lowest) band has no precision. Due to precision, two simultaneous events cannot be

exactly distinguished because the ‘gap’ between them is too small to be considered.

Here the small gap also results in tolerance of the behaviours when mapping the two

events into the corresponding activities of a finer band. For instance, considering the

lecture example with three bands, precision can be defined as follows:

Precision(Week,Hour) = 2

Precision(Hour,Minute) = 5

If event break is supposed to happen in the middle of a lecture, the precision of

the hour band restricts the maximal duration of a break to be five minutes, other-

wise break cannot be considered an instantaneous event in the hour band. Also, the

precision allows the break to happen five minutes early or late.

Therefore, similar to the definition of instant events, the simultaneous operator is

defined as follows:

P1
−→
# P2 =̂ P1 ;(P2 ◮ ρ)

where ρ is the precision of that band. Two simultaneous events, e.g., a and b, are

expressed as either a is before b or b is before a, but they must occur within the

precision. We also use the following abbreviations to represent simultaneous events:

a
−→
# b = (a → SKIP)

−→
# (b → SKIP)

a#b = a
−→
# b � b

−→
# a

where # denotes that a and b are simultaneous, and
−→
# that they are simultaneous

but with an order. This abbreviation is applied to all simultaneous events in this

chapter.

Simultaneity is also a very strong constraint which is similar to instantaneity.

That is, either simultaneous events occur together or none of them occurs individ-

ually. The difference is that two simultaneous events allow one of them to occur

within the precision after the other has occurred, even though such a short delay is

too small to be considered in this band. Simultaneous events are the same as instant

events if these events are not mapped.
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We cannot distinguish two simultaneous events in the current band; however, the

interval between simultaneous events will be revealed in the form of precision when

mapping these events to corresponding activities in a finer band. As a result, the

precision basically plays two roles in a band: one is to measure accuracy of events

such as simultaneous events, the other is to restrict the duration of activities. Un-

fortunately, simultaneity is not transitive, i.e., the fact that a and b are simultaneous

and so are b and c, does not imply that a and c are simultaneous. This also ele-

gantly explains that a sequence of consecutively simultaneous pairs or repeatedly

fast-moving events can be observing durative behaviours. We might not recognise

any pair of them because the interval between them is less than the precision, but

the whole duration may take a long time.

13.3.3 Punctual Clock-Tick Event

In modelling of real-time systems, we often employ ‘clocks’ to aid scheduling and

coordination. We represent a default abstract clock in a band by defining each gran-

ule as a ‘clock-tick’ event, which is modelled just like any other event. However

these clock-tick events are forced to happen at same intervals by the deadline oper-

ator. When necessary, more abstract clocks can be defined by the basic unit of time

in the band. For example, the clock called business days is placed in the day band;

however, it is different from the default day clock.

Timed CSP is unlikely to explicitly represent clock-tick events because it can

never guarantee that an event is able to happen precisely at a specific time point.

The occurrence of events in timed CSP depends on their environment’s interaction

even if the timeout operator is applied. However, this situation is entirely changed if

we use the deadline operator. For example, we may simply define a punctual clock

as follows:

C = ((tick → SKIP) ◮ 0) ;WAIT 1 ;C

where the clock-tick event tick must occur precisely every time unit otherwise the

punctual clock will not start.

We define clock-tick events for every time band, e.g., the clock-tick events for

the lecture example given in previous section can be defined as follows:

Event : Minute mtick

Event : Hour htick

Event : Week wtick

An intuitive way to understand a clock-tick event is that it denotes a start point

of a new time unit or the end point of the previous time unit. Therefore, for different

clock-tick events in different time bands such as mtick and htick, we say that the time

interval between two hticks in the hour band contains 60 mticks, rather than that an

htick can be mapped to an activity in the minute band which includes 60 clock-tick
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events. That is to say, if a mapping is necessary, a clock-tick event in a higher band

is mapped to an activity in a lower band which contains only one clock-tick event.

Punctual clock-tick events provide us with extensive convenience to express

clock-related properties. For example, if tick is a clock-tick event representing 1:00,

tick ‡ a denotes that a must happen precisely at 1:00 even if we observe it in a finer

band; tick#a means that a must occur at 1:00 too, but a is allowed to happen early

or late within the bound of the precision; tick → a → SKIP states that a occurs

only if its environment provides the offer, and a occurs exactly at 1:00 only if its

environment is friendly.

Note that clock-tick events are just ordinary events and they become meaningful

only if we let them happen precisely at intervals of one time unit. Therefore, we

attach a local timer to any processes during their life cycles. For example, a process

with a timer is defined as follows:

PT = ((P ; e → SKIP) |[ {tick, e} ]|Timer △ {e}SKIP) \ {e}

Timer = tick → Timer′

Timer′ = WAIT 1 ‡ (tick → SKIP) ;Timer′

where the event e (e /∈ αP ) is used to stop the timer by the interrupt operator when

P terminates, and one time unit in WAIT is a local time unit depending on which

band the process is defined in. Notice that such a timer does not record the dura-

tion of its whole life cycle, while it starts only if the first clock-tick event of the

process starts. By comparison with a globally punctual clock in a band, local timers

to processes are able to effectively avoid the deadlock caused by synchronisation

of clock-tick events.3 For the sake of convenience, we directly define a process as

usual and subsequently its timer is attached automatically.

We usually use a clock-related process to express a very strong constraint that

‘something must occur at certain time points’. For example, a process tick → a →

tick → SKIP means that a must occur between two clock-tick events. Hence, a

well-defined clock-related process is one in which all clock-tick events cannot be

blocked. For example, a counterexample can be as follows:

P = tick → tick → (WAIT 2 ; (tick → SKIP))

where obviously the third tick cannot occur such that the local timer blocks the

occurrence of all clock-tick events.

3One of the approaches to model-check a timed CSP process is to translate it into an untimed CSP

one in the form of timewise refinement [27]. This idea is quite powerful, but at the cost of dropping

all WAIT d terms [24] because of the complexity of synchronising clock-tick events in parallel.

However, the mechanism of local timers in our model does not require the synchronisation of all

clock-tick events so as to avoid an unnecessary deadlock.
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13.3.4 Activities

An activity is a special process with clock-tick events. Activities are detailed expla-

nations of events of higher bands, and hence, to maintain consistency of a system,

‘qualified’ activities must satisfy the following three requirements:

1. An activity must start and also finish with clock-tick events.

2. An activity must have one or more signature events.

3. Duration of an activity must be no longer than the precision of a higher band in

which its corresponding event is placed.

Requirement 1 states that an activity should be well placed in the band. If the

activity cannot start or finish with clock-tick events, it is supposed to be replaced in

a finer time band. For example, an activity may be defined as follows:

A = tick#a1 ; tick#a2 ; tick#a3

which means that the events such as a1, a2 and a3 are simultaneous with clock-tick

events, and the duration of the activity is two time units. Note that a1 may actually

occur before the event tick in tick#a1, but we consider that A still starts with the

clock-tick event since tick and a1 cannot be distinguished in this time band. The

duration of A is counted from the occurrence of the first tick, and not from the start

of the activity. That is, the activity may initially wait in silence until the coming of

an explicit clock-tick event, and its duration is actually determined by how many

clock-tick events it involves.

As Requirement 2, each activity must have one or more signature events, which

is not only the major observation of the activity, but also the linking to the corre-

sponding event in a higher band. For example, a2 is a signature event in the activity

A and an overhead line is used to make it different from other ordinary events. An

activity can have more than one signature event, which must be linked to the same

event of a coarser band and only one of which can happen during the life cycle of the

activity. For example, making a drink by a vending machine may have two choices,

tea or coffee, which can be described as follows:

Drink = (tick#hotwater ; tick#milk ; tick → tick#tea)

� (tick#hotwater ; tick#milk ; tick#coffee)

The duration of an activity should be no longer than the precision of a higher

band; otherwise it cannot be considered an event of the higher band. This imperative

requirement will be fulfilled when the activity is mapped, since the precision for

the activity is not yet decided until the link with the event in the higher band has

been established. For example, there are two activities, A and B , in a day band, but

A and B are linked to two events in a month band and a year band respectively;

consequently, their precisions might be different.

When mapping events of a higher band to activities of a lower band, well-defined

activities are crucial in maintaining consistency between different time bands. The
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following three examples are not well-defined activities which violate Require-

ments 1–3, respectively:

A1 = a → tick → b → SKIP

A2 = tick → a → tick → b → tick → SKIP

A3 = tick → a → A3

Because an activity is a clock-related process, we can control when the activity

will happen by fixing any event of the activity to happen at a specific time. That

is, the events in the activity are uninterrupted events, as introduced in Sect. 13.2.9.

For example, if we impose the signature event a2 of the above activity A to happen

at 10:00, a1 must then happen at 9:00 and A must finish at 11:00. In fact, A starts

from the beginning of the system; however a1, very similar to the event of (13.1) in

Sect. 13.2.8, can occur only if the other event must occur later.

13.3.5 Mapping Between Bands

In the components of the model considered so far, all behaviours have been confined

to a single band. The essence of the timebands model is to describe the behaviour of

each component of a system in a best suitable time band, and compose the multiple-

band behaviours regarding the properties to be verified. To achieve this goal, events

in one band may need to be mapped into activities in finer bands.

Activities become useful only when they are linked with events in higher time

bands. Processes defined in different time bands have no intersection except for the

linking of events and activities. Those links are the one and only channel to integrate

all behaviours of the timebands model. The establishment of the links is achieved by

means of imposing the events and the signature events of the activities to be instant

events, so that they are constrained to occur together at all time.

The linked pair of an event and an activity can affect each other to decide when

they will occur in their own bands. Recall the lecture example illustrated in Fig. 13.1.

Activity B can be given the following behaviour:

Event : Minute c1, c2

Activity : Minute B = c1#mtick ;mtick → mtick → mtick → mtick → c2#mtick

This activity actually means that students have to take a 5-minute break and any

shorter or longer break is not allowed. If we insist that event break in the hour band

must occur in the middle of the lecture, e.g., around 10:00 (event break and the

clock-tick event are simultaneous), and then event c1 in activity B can only happen

between 9:50 and 10:00, on account of the five-minute precision. That is to say, the

signature event c2 can happen only between 9:55 and 10:05. We can also set the

time when c2 in activity B occurs in the minute band, which alternatively results
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in the time when event break must occur in the hour band. For example, if we say

that c2 occurs at 9:50, and then break in the hour band must occur between 9:00 and

10:00.

To maintain consistency and coordination between different time bands, we sim-

ply make events and the signature events of corresponding activities instant. For

example, the mapping in the lecture example can be defined as the following pro-

cesses:

Link1 = lecture ‡ l2

Link2 = break ‡ c2

And then these processes are synchronised with other processes in the system on all

events of the alphabets of Link1 and Link2.

Finally, we use the lecture example, illustrated in Fig. 13.1, to demonstrate the

integration of time bands. Granularity, precision and clock-tick events have been

defined in previous sections. In the week band, we specify that a lecture must occur

within a week:

Event : Week lecture

LECTURE = wtick → lecture → wtick → SKIP

And activity L, expressing a two-hour lecture with a break, is defined in the hour

band as follows:

Event : Hour l1, l2,break

Activity : Hour L = htick#l1;htick#break;htick#l2

Before events and activities are linked together, processes defined in different

time bands have no interaction at all. Thus, the system before mapping is expressed

by an interleaving process:

S = LECTURE ||| L ||| B

And then the integrated system is constructed by linking events lecture and break

with activities L and B respectively:

SYS = S |[ {lecture, l2} ]|Link1 |[ {break, c2} ]|Link2

In practice, the assumption of maximal progress enables events to occur as soon

as possible. For example, the process LECTURE in the week band specifies that

lecture may happen anytime within a week, but without a constraint from other

processes or bands it always happens at the beginning of the week. With respect

to Fig. 13.1,4 if the lecture example starts, wtick, htick and l1 will initially start

4The clock-tick events are not directly given in this figure, whereas the reader can easily find out

where these events should be placed by the description of the system.
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together; lecture cannot happen immediately because it is coordinated with l2 or

the third htick in the hour band; c1 in the minute band cannot happen because it

depends on break or the second htick in the hour band. Subsequently, after one

time unit of the hour band, break happens; however, c2 has occurred five time units

(within the precision) of the minute band earlier, since break and the second htick

are simultaneous. Consequently, another hour later, l2 and lecture happen together.

13.3.6 Discussion

The revolution of the timebands model is to use a mapping between instantaneous

events and durative activities to integrate different behaviours described in different

time scales into a whole system. The key idea of the mapping is to use instantaneity

of the events and the signature events of the corresponding activities, and integrity

(uninterrupted events) of the activities to locate right positions for mapped entities.

The above two distinct properties are achieved through applying the unique process,

the miracle.

The time system of the timebands model is a combination of implicit time and

explicit clock-tick events. Here implicit time, similar to time in timed CSP, is a

global clock whose granularity is the basic time unit of the finest time band. How-

ever, processes themselves do not have read-access to the clock which is rather used

in the semantic framework for the analysis and description of processes. A clock-

tick event is an observation of a single precise time of the global clock and it can

be accessed by any process. Because clock-tick events are punctual, we can specify

clock-related events which must occur at specific time points.

Every clock-related process has a local timer (a clock with clock-tick events),

which turns out to be able to interfere with the accuracy of its local clock. We do

not require that the local clock of a process must be synchronised with the global

clock. For example, we let htick‡a to express that a must happen at the beginning

of an hour such as 1:00, while we make the signature event (such as a′) of the

corresponding activity simultaneous with mtick in the minute band. Thus, a′ must

happen at 1:00 because it is instant to a, but mtick#a′ allows its local clock, relative

to the clock of the hour band, to quick or slow a little bit within the precision of

the minute band. Of course, the local clock of a process can be easily synchronised

with the global clock. This property is very useful in modelling the behaviour of a

distributed system where components may have asynchronous clocks.

The advantage of the timebands model is the separation of concerns in dealing

with different properties with different time scales. Many properties in the time-

bands model involve only few time bands rather than all of time bands. Obviously,

apart from a better description of a complex system, proving such properties is more

efficient in the timebands model than the traditional model with a single flat time.

In the following section, by means of a complicated example, the mine pump, we

demonstrate how significantly the timebands model contributes to describing com-

plex real-time systems with multiple time scales.



13 Modelling Temporal Behaviour in Complex Systems with Timebands 295

13.4 Case Study

The mine pump example was first proposed by Kramer et al. [20] and later used

by Burns and Lister [6] as case study for developing dependable systems. The mine

pump system is used to control a pump to pump out the water which is collected in a

sump. The mine has two sensors to detect when water is above a high level or below

a low level. A pump controller switches the pump on when the water level becomes

high and off when it goes below the low level. The system also monitors the level

of methane, since a pumping operation during a dangerous methane level will cause

explosion. Reading from all sensors, the operations of the mine pump should satisfy

the following safety requirements:

1. The pump can be used only when the methane level is safe.

2. The pump must be switched on within an interval since the water level has be-

come high.

3. The pump must be switched off within an interval whenever the methane level

becomes dangerous.

In a mine, water and methane come from the environment. We assume that the

change of the water level is slow, and the methane level is stable in most of the

time but can incidentally change very fast. Therefore, we use two time bands, a

minute band and a second band, to describe the slow changing of the water level

and the dramatic changing of the methane level respectively. For example, a delay

of few seconds may have no influence on the change of the water level, while it

could be crucial for switching the pump off when the methane level suddenly be-

comes dangerous. Granularity and precision between the two bands are defined as

follows:

TBI = {Minute,Second}

Granularity(Minute,Second) = {60}

Precision(Minute,Second) = 5

To simplify the modelling of the mine pump, we abstract the state of the water

level as Fig. 13.2 by combining the values of two sensors for detecting the water

level. That is, the state of the water level is low until water passes the high level,

and it stays high until below the low level. This abstraction is reasonable since

it is a practical decision to keep the pump on until the water level becomes low,

though sometimes the pump has to be switched off due to the dangerous methane

level.

We also assume that each component takes some time to react, e.g., updating

values of sensors may takes a few seconds, the pump may take some time units to

start working and the sampling frequency also brings delay to update fresh values of

states. As a result, reaction time will be considered in the light of how much impact

it causes on the safety requirements of the system.
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Fig. 13.2 Sample timing diagram for water level

13.4.1 A Pump Controller

Depending on the states of the water and methane levels, a pump controller exe-

cutes actions on the pump. Therefore, in the following implementation defined in

the minute band, the system is basically decomposed into two components: one for

monitoring the behaviour of water and the other for the behaviour of methane.

Event :Minute water.high,water.low,pump.on,pump.off ,

methane.safe,methane.danger,mtick

WATERlow = water.high → (wl := false ;WATERhigh)

� pump.off → WATERlow (13.3)

WATERhigh = water.low → (wl := true ;WATERlow)

� pump.on → WATERhigh

� ¬ms&pump.off → WATERhigh (13.4)

METHANEsafe = methane.danger → METHANEdanger

� pump.on → METHANEsafe

� pump.off → METHANEsafe (13.5)

METHANEdanger = methane.safe → METHANEsafe

� pump.off → METHANEdanger (13.6)

We here remove any time constraint from these components in order to make

it become a purely logic judgement for proper operations. For example, process
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WATERlow in (13.3) states that the water level initially stays at the low level, and

it can become high through event water.high and still remain low if executing

pump.off . In addition, ms and wl are two state variables to denote the safe methane

and low water respectively. In the process WATERhigh, the event pump.off can still

happen only if the methane level is dangerous.

These components must agree on when the pump is to be switched on or off.

For example, before reaching the low water level during the pumping operation, the

pump might be switched off due to the dangerous methane level. Afterwards, the

pump has to be switched on again until the water level is below the low level.

CONTROL = WATERlow |[ {pump.on,pump.off } ]|METHANEsafe (13.7)

Without considering the timing issues, the above implementation CONTROL

clearly shows that event pump.on can occur only when the water level is high and

the methane level is safe (because pump.on is executed from processes WATERhigh

and METHANEsafe). This satisfies the first safety requirement of the system. How-

ever, to make this system closer to reality, we will verify the other two more refined

properties, which are going to be modelled in different time bands because of the

different behaviours when the water and methane levels are changing.

13.4.2 Behaviour of Water and Methane in the Minute Band

Suppose that the change of the water level is slow and hence its behaviour is cap-

tured in the minute band. The methane level is stable for most of the time, but can

change very fast; e.g., it can reach the dangerous level in just few seconds. Obvi-

ously, such a dramatic change of methane is best described in a finer time band

such as the second band. In the following modelling, we will specify the different

behaviours of the two components in the two time bands, depending on different

scenarios.

For modelling the change of the water and methane levels, we use worst-case

execution time to describe the worst situations. As illustrated in Fig. 13.3, the worst

situation for water is that the water level has reached the high level but the pump

cannot be switched on because the methane level just becomes dangerous. Hence,

it is unnecessary to consider any operation when the water level is between the low

and high levels if the worst case has satisfied the safety requirements. In practice,

we always give a good safety margin to the value of the high level in case the pump

cannot be switched on immediately. For example, the pump must be on within t1
time units after the water level becomes high, otherwise the mine fails. And the

pump can take the water level below the high level if it has continuously worked

for t2 time units. If assuming that r1 and r2 are the rates of change respectively at

which water enters and leaves the mine, we can easily get the equation: r1 ∗ t1 =

(r2 − r1) ∗ t2.
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Fig. 13.3 Assumptions on the change of water and methane

Thus, the time constraint of the behaviour of water and the related pump opera-

tions in the minute band is modelled as follows:

TCW = water.high → HIGH(l1) (13.8)

HIGH(t1) = IF t1 == 0 THEN (pump.on → ON(l1)

� flooding → STOP)

ELSE (WAIT 1 ;HIGH(t1 − 11)

� pump.on → ON(l1 − t1)) (13.9)

ON(t) = OFF(t ∗ r1/(r2 − r1)) (13.10)

OFF(t2) = IF t2 == 0 THEN pump.off → water.low → TCW

ELSE (WAIT 1 ;OFF(t2 − 11)

� pump.off → HIGH(l1 − t2 ∗ (r2 − r1)/r1)

(13.11)

where t, t1 and t2 are time variables, and l1, r1 and r2 are constants, e.g., l1 is the

maximal value of the bound of t1. The operator, IF b THEN P ELSE Q, is actually

a convenient shorthand of a guarded process, b&P �¬b&Q.

The implementation in (13.9) states that pump.on should happen within some

time units if the water level is high. The value of t1 in HIGH(t1) is the deadline that

pump.on must satisfy. If pump.on happens before the deadline, the net water level

over the high level is recorded and passed to ON(t) in the form of time. Thus, the

equation in (13.10) calculates how long the pump can lower the water level below

the high level in line with the value from ON(t). The implementation in (13.11)

denotes that the pump might be switched off before water is below the high level

because of the dangerous methane level. If the pump is switched off earlier, the

program has to go to HIGH again to wait for the occurrence of pump.on. However,

the maximal interval to make the mine fail obviously becomes shorter or is less

than l1.
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Accordingly, the timed behaviour of water and the pump is defined by the fol-

lowing parallel composition:

A = {pump.on,pump.off ,water.low,water.high}

TWATER = WATERlow |[A ]|TCW (13.12)

The behaviour of methane in the minute band is relatively simple. Under the

circumstance of worst-case execution time, we also assume two constants, l3 and l4,

to be the maximal values of two time variables, t3 and t4, as illustrated in Fig. 13.3,

to denote the maximal duration of the dangerous methane level and the minimal

duration of the safe level respectively.

TCM = methane.danger

→ WAIT l3 ; (methane.safe ◮ 0) ;WAIT l4 ;TCM (13.13)

TMETHANE = METHANEsafe |[ {methane.safe,methane.danger} ]|TCM (13.14)

And then, the system in the minute band can be finally modelled as follows:

TCONTROL = TWATER |[ {pump.on,pump.off } ]|TMETHANE (13.15)

Recall the safety properties which are introduced in the beginning of this sec-

tion. Property 1 can be proved even under the untimed environment. The proof of

Property 2 depends on the relationship among those constants. For example, l1 is

obviously greater than l3, otherwise the mine will fail since the pump cannot be

switched on in time. Ideally, l4 is greater than l2 or l1 ∗ r1/(r2 − r2) so that water

can be lowered below the high level once the pump is switched on. However, this

requirement is too strict to accommodate many patterns of methane’s behaviour,

e.g., the frequent oscillation around the dangerous level of methane does not satisfy

this requirement. Therefore, it is more reasonable to satisfy a looser requirement

that l3/l4 is less than l1/l2 within any interval (whose length should be greater than

l1 + l2).

13.4.3 Behaviour of Methane in the Second Band

Unfortunately, Property 3 is unsuitable to be verified in the minute band. We know

that pump.off will happen after methane.danger if the pump is on, and this logi-

cal order can be nicely proved in the minute band. However, in fact, Property 3 is

interpreted as a statement that methane.danger and pump.off must occur simulta-

neously. To measure the simultaneous actions of two events, we have to consider

the influence of various reaction delays such as transmission delay, reaction delay

of the pump and so on, whose behaviours can only be captured in the second band.

To model and verify Property 3, we need to explore more details in related events of

the minute band.
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First of all, we specify precision of the minute band to be 5 seconds, which

directly determines the definition of simultaneity and the maximal duration of an

activity. The delay of updating the state of water is ignored in the minute band,

but it is considered in the second band. We assume the delay to be 2 seconds, and

water.high and water.low are mapped into two activities, WHs and WLs , in the

second band respectively:

Activity : Second WHs = stick#high ; stick → stick#whe (13.16)

Activity : Second WLs = stick#low ; stick → stick#wle (13.17)

where stick is a clock-tick event of the second band, whe and wle denote the end

of the two activities respectively, and low and high are two signature events. In

addition, the activities are annotated for convenience.

Moreover, on account of the costing time on updating states and sampling fre-

quency, methane.danger is mapped into the following activity:

Activity : Second MDs = stick#danger ; stick → stick → stick#mde (13.18)

And then, with regard to reaction delay, pump.off is mapped as well:

Activity : Second PFs = stick#command_off ; stick

→ stick#action_off (13.19)

where the event action_off denotes the genuine time when this command takes ef-

fect.

Furthermore, we impose a constraint on all of these activities so that none of

them can overlap each other because changing states presumably involves some

computation:

ACTs = (WHs ;ACTs) � (WLs ;ACTs)

� (MDs ;ACTs) � (PFs ;ACTs) (13.20)

To verify Property 3 in the second band, the activities in the above implemen-

tation are integrated with the minute band by making their signature events instant

with the corresponding events of the minute band. For the sake of simplicity, ACTs

is integrated with CONTROL, rather than TCONTROL with time constraints, be-

cause the ‘micro’ relation of methane.danger and pump.off is irrelevant with those

assumptions on how water and methane change.

CONTROLsecond = (CONTROL ||| ACTs)

|[ {water.high,high} ]|Link3

|[ {water.low, low} ]|Link4

|[ {methane.danger,danger} ]|Link5

|[ {pump.off , commmand_off } ]|Link6 (13.21)
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Note that these linking processes are just similar to Link1 and Link2 introduced

in Sect. 13.3.5. Even without the mechanised proof, intuitively, we recognise that

Property 3 can be satisfied only if no other event in the minute band occurs between

methane.danger and pump.off , since the total duration of the two events in the sec-

ond band is 5 seconds. That is, when executing the real program code, the program

should directly implement pump.off when the methane level is dangerous instead of

wasting time on updating the state of water.

13.4.4 Verification

To prove the three properties of the mine pump example by hand is error-prone since

a number of obligations are discharged by obvious and intuitive assumptions where

security breaches and system holes are usually hidden. However, establishing the

mechanical proof in theorem provers is time-consuming, such as PVS [30] in which

the semantics of TCSPM has been embedded and ProofPower [36] in which various

theories in UTP are mechanised. The model checker FDR [1] is very successful

in efficiently verifying both safety and liveness properties of a system modelled in

CSP. Therefore, timed CSP specifications can be implemented by FDR if they are

translated into untimed ones. However, regardless of its expressiveness, the miracle

cannot be expressed in FDR.

Timed automata [2, 22] are powerful in designing real-time models with explicit

clock variables, and a number of tools have been proved to be successful like the

popular UPPAAL [21]. Timed automata are transition systems consisting of a set of

states along with a set of edges to connect these states, and hence it is potential to

express the miracle simply as an unstarted state. The idea of using timed automata

to implement TCSPM or the timebands model is highly inspired by the work [11]

in which they define a set of composable timed automata patterns so that timed

CSP can be translated to timed automata. Even if it is possible to represent the

miracle in timed automata, the mechanism of the timebands model still involves

a massive amount of work. For example, we need to develop a sound operational

semantics of TCSPM which is usually described as a labelled transition system.

We also have to explore a trace-back technique for executing the model, since the

fact that a process will not start if the deadline cannot be satisfied means that the

process will go back to the unstarted state if the execution cannot go ahead. In

the meantime, the observations which have happened during the execution will be

erased, and the process just behaves like it has never started. All in all then, the

work of fully analysing the timebands model in timed automata is in progress, and

therefore the following verification of the mine pump example in UPPAAL simply

provides a flavour to show how it will be possible to prove properties in a model

checking approach.

The model checker UPPAAL is based on the theory of timed automata and

its modelling language provides expressive features such as urgent edges or loca-

tions. The query language of UPPAAL is a subset of TCTL (timed computation tree
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Fig. 13.4 The pump controller without time constraints

logic) [3]. More explanations of UPPAAL will be given along with the modelling of

the mine pump example. First, the process CONTROL in (13.7) is modelled as two

timed automata in Fig. 13.4. Locations (or states) of a timed automaton are graphi-

cally represented by circles where the overlapped circle is the initial location. Each

location has an invariant which is an expression of conditions, and the program con-

trol can stay on this location only if its invariant is satisfied. A transition is a jump

from one location to another through an edge which usually consists of three parts:

guard, synchronisation and update. For example, illustrated in the left automaton of

Fig. 13.4, starting from the location WH (WATERhigh), event pumpoff is synchro-

nised (or fired) with another one in the right automaton only if the methane level is

dangerous. As a result, Property 1 holds if the following query is satisfied:

A[] METHANE.MS and WATER.WH imply ms==true

which means that for all reachable locations, being in the locations METHANE.MS

and WATER.WH implies that ms==true. Since pumpon can be fired only from

the locations MS and WH, the fact that the methane level is always safe guarantees

Property 1.

The behaviour of water and methane in the minute band, TCW and TCM, are

represented by another two automata in Fig. 13.5. Note that x in both automata is

a local clock that can be reset in the update part of an edge and used in a guard

or an invariant. For example, x is reset during the transition from location TCW to

location HIGH. Unfortunately, the value of a clock is not allowed to be assigned

to any variable in UPPAAL, and that is why we define two integral variables, c1

and c2, to record how long the program control stays on the same location. UP-

PAAL provides pair-wise synchronisation (one sender and one receiver) via regular

channels and broadcast synchronisation (one sender and an arbitrary number of re-

ceivers) via broadcast channels. However, a receiver in a broadcast channel can miss

the synchronisation if it is not ready yet. Obviously, this is not same as the parallel

in timed CSP or TCSPM . For example, in the mine pump example, the synchronisa-

tion on pump.on and pump.off involving three different processes cannot be directly

expressed in UPPAAL. The solution is to use a shared variable (e.g. on and off

in Fig. 13.5) that is increased on the edges leading to a location where those events

are ready to happen and is decreased when leaving the location. When the program

stays on a location where all events are ready, a sender can be triggered. For exam-

ple, the senders for pump.on and pump.off are defined as two independent automata

in Fig. 13.6.
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Fig. 13.5 The behaviour of water and methane in the minute band

Fig. 13.6 The senders in a

multicast synchronisation

In addition, urgent (labelled with U) and committed (labelled with C) locations

are used in Fig. 13.5. Time is not allowed to pass when the program is in any of

the two locations, but an urgent location can engage in an interleaving. Notice that

the approach to calculate the values of t1 and t2 in Fig. 13.5 is different from the

one in (13.10) and (13.11) because a recursive process in the timebands model is

measured by a descending order. To prove Property 2, we simply need to show the

automata can never reach location STOP or event flooding can not be fired if

l1 > l3 and l2 < l4. Such a query can be expressed as follow:

A[] not TCW.STOP

which means that it is impossible to reach the location TCW.STOP.
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Fig. 13.7 Activities in the second band

Fig. 13.8 The linking

processes in the mapping

To verify Property 3, we should mechanise the miracle so as to express those pro-

cesses and operators defined by the miracle. However, the embedding of the miracle

in UPPAAL is still in progress. Here, regarding the mapping only in the mine pump

example, we use an informal scheme to make sure coordination of events and activ-

ities in different bands. For example, the process ACTs , a collection of all activities

in the second band, in (13.20) is described as a timed automaton in Fig. 13.7. The

starting of each activity is guarded by a state variable which denotes whether the

event in the minute band is ready to happen. For example, the bottom loop (corre-

sponding to MDs ) in Fig. 13.7 states that danger can happen only if ms==true,

and then the automaton waits three time units and finishes the activity with event

mde. The safe methane level means that the program control is staying on loca-

tion MS as Fig. 13.4, and hence methanedanger is ready to occur. The linking

processes like Link 3–Link 6 are expressed as another automaton in Fig. 13.8. The

instantaneity of events and the signature events of activities is expressed by com-

mitted locations which, however, cannot exactly describe this property because a

committed location just means that time is not allowed to reside and an edge must

be fired immediately. If the guard of the edge is not satisfied yet, the automaton is

deadlocked.

We add a new location with a guard in the automaton of METHANEsafe in order

to prove Property 3, as illustrated in Fig. 13.9. The guard on the edge to location
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Fig. 13.9 The linking

processes in the mapping

STOP means if the pump has not been switched off within five time units since the

methane level becomes dangerous, the edge can lead to this location. Obviously, we

need to prove the following query to be satisfied:

A[] not METHANE.STOP

The verifier of UPPAAL shows that the above query holds if we impose a constraint

to exclude any other events between methane.danger and pump.off .

13.5 Conclusion

In this chapter we have formalised the timebands model using a new timed model

(TCSPM ) and shown how significantly the model contributes to describing dynamic

behaviours of complex real-time systems at many different time scales. Viewing

a system as a collection of behaviours within a finite set of bands and integrating

these behaviours through linking events and corresponding activities are a natural

and effective approach to separate concerns and identify inconsistencies between

different time bands of the system. We have also demonstrated the potential to use

timed automata to implement the timebands model. Of course, it is still a long way

to go for fully mechanising the timebands model. In future work we will apply

the timebands framework to the analysis of more complex systems such as socio-

technical systems. We believe that the modelling with a time-based hierarchy is able

to help develop a comprehensive foundation to dependable systems.
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