187 research outputs found
A factorial design for optimization of the analytical variables on the development of a genoassay for the transgenic soybean detection
At the laboratory, analytical method optimizations are performed to achieve the
maximum sensitivity and selectivity. Routinely, this procedure is carried out by
optimizing one-factor-at-a-time approach until there is no further improvement,
where each experimental parameter is optimized separately and independently of the
other factors.N/
Self-organized criticality in deterministic systems with disorder
Using the Bak-Sneppen model of biological evolution as our paradigm, we
investigate in which cases noise can be substituted with a deterministic signal
without destroying Self-Organized Criticality (SOC). If the deterministic
signal is chaotic the universality class is preserved; some non-universal
features, such as the threshold, depend on the time correlation of the signal.
We also show that, if the signal introduced is periodic, SOC is preserved but
in a different universality class, as long as the spectrum of frequencies is
broad enough.Comment: RevTex, 8 pages, 8 figure
Recommended from our members
Complex dynamics of the integer quantum Hall effect
We investigate both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the integer quantum Hall effect. Classical scattering is complex, due in one case to the approach of scattering states to an infinite number of bound states. We show that bound states are generic, and occur for all but extremely smooth scattering potentials ({vert bar}{rvec {gradient}}{vert bar} {yields} 0). Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances rather than classical bound states. Extended scatterers provide an explanation for the breakdown of the QHE at a comparatively small Hall voltage. 16 refs., 14 figs
Recommended from our members
Generic component failure data base
This report discusses comprehensive component generic failure data base which has been developed for light water reactor probabilistic risk assessments. The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) was used to generate component failure rates. Using this approach, most of the failure rates are based on actual plant data rather then existing estimates
Los nuevos grupos y sus viejas prácticas en la Argentina reciente (2003–2014): Entre ámbitos privilegiados de acumulación, especulación y monopolios
This article analyzes the mechanisms by which a number of Argentinian business groups, which by the end of the 1990s were outside the top hundred firms measured by sales, achieved high growth rates since 2003 in a context characterized by the foreignization of many of their bigger peers. Beyond the significant attention these received by the press, especially given the groups’ contacts with national government, no academic articles have explored their growth in a comprehensive way. The objective of this article is to fill that gap by identifying and analyzing the different growth patterns of these new business groups
Recommended from our members
Neutron star accretion and the neutrino fireball
The mixing necessary to explain the Fe'' line widths and possibly the observed red shifts of 1987A is explained in terms of large scale, entropy conserving, up and down flows (calculated with a smooth particle 2-D code) taking place between the neutron star and the explosion shock wave due to the gravity and neutrino deposition. Depending upon conditions of entropy and mass flux further accretion takes place in single events, similar to relaxation oscillator, fed by the downward flows of low entropy matter. The shock, in turn, is driven by the upflow of the buoyant high entropy bubbles. Some accretion events will reach a temperature high enough to create a neutrino fireball,'' a region hot enough, 11 Mev, so as to be partially opaque to its own (neutrino) radiation. The continuing neutrino deposition drives the explosion shock until the entropy of matter flowing downwards onto the neutron star is high enough to prevent further accretion. This process should result in a robust supernova explosion
Supplemental Information 4: Raw data.
This study evaluated pollution levels in water and sediments of Península de Paraguaná and related these levels with benthic macrofauna along a coastal area where the largest Venezuelan oil refineries have operated over the past 60 years. For this, the concentration of heavy metals, of hydrocarbon compounds and the community structure of the macrobenthos were examined at 20 sites distributed along 40 km of coastline for six consecutive years, which included windy and calm seasons. The spatial variability of organic and inorganic compounds showed considerably high coastal pollution along the study area, across both years and seasons. The southern sites, closest to the refineries, had consistently higher concentrations of heavy metals and organic compounds in water and sediments when compared to those in the north. The benthic community was dominated by polychaetes at all sites, seasons and years, and their abundance and distribution were significantly correlated with physical and chemical characteristics of the sediments. Sites close to the oil refineries were consistently dominated by families known to tolerate xenobiotics, such as Capitellidae and Spionidae. The results from this study highlight the importance of continuing long-term environmental monitoring programs to assess the impact of effluent discharge and spill events from the oil refineries that operate in the western coast of Paraguaná, Venezuela
Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
- …