808 research outputs found

    ELVIS - ELectromagnetic Vector Information Sensor

    Get PDF
    The ELVIS instrument was recently proposed by the authors for the Indian Chandrayaan-1 mission to the Moon and is presently under consideration by the Indian Space Research Organisation (ISRO). The scientific objective of ELVIS is to explore the electromagnetic environment of the moon. ELVIS samples the full three-dimensional (3D) electric field vector, E(x,t), up to 18 MHz, with selective Nyqvist frequency bandwidths down to 5 kHz, and one component of the magnetic field vector, B(x,t), from a few Hz up to 100 kHz.As a transient detector, ELVIS is capable of detecting pulses with a minimum pulse width of 5 ns. The instrument comprises three orthogonal electric dipole antennas, one magnetic search coil antenna and a four-channel digital sampling system, utilising flexible digital down conversion and filtering together with state-of-the-art onboard digital signal processing.Comment: 8 pages, 3 figures. Submitted to the DGLR Int. Symposium "To Moon and Beyond", Bremen, Germany, 2005. Companion paper to arXiv:astro-ph/050921

    Electron Density Dropout Near Enceladus in the Context of Water-Vapor and Water-Ice

    Get PDF
    On 12 March 2008, the Cassini spacecraft made a close encounter with the Saturnian moon Enceladus, passing within 52 km of the moon. The spacecraft trajectory was intentionally-oriented in a southerly direction to create a close alignment with the intense water-dominated plumes emitted from the south polar region. During the passage, the Cassini Radio and Plasma Wave System (RPWS) detected two distinct radio signatures: 1) Impulses associated with small water-ice dust grain impacts and 2) an upper hybrid (UH) resonance emission that both intensified and displayed a sharp frequency decrease in the near-vicinity of the moon. The frequency decrease of the UH emission is associated with an unexpectedly sharp decrease in electron density from approximately 90 el/cubic cm to below 20 el/cubic cm that occurs on a time scale of a minute near the closest encounter with the moon. In this work, we consider a number of scenarios to explain this sharp electron dropout, but surmise that electron absorption by ice grains is the most likely process

    The Ion Composition of Saturn's Equatorial Ionosphere as Observed by Cassini

    Get PDF
    An edited version of this paper was published by AGU. Copyright 2018 American Geophysical Union.The Cassini Orbiter made the first in situ measurements of the upper atmosphere and ionosphere of Saturn in 2017. The Ion and Neutral Mass Spectrometer (INMS) found molecular hydrogen and helium as well as minor species including water, methane, ammonia, and organics. INMS ion mode measurements of light ion species (H+, H2+, H3+, and He+) and Radio and Plasma Wave Science instrument measurements of electron densities are presented. A photochemical analysis of the INMS and Radio and Plasma Wave Science data indicates that the major ion species near the ionospheric peak must be heavy and molecular with a short chemical lifetime. A quantitative explanation of measured H+ and H3+ densities requires that they chemically react with one or more heavy neutral molecular species that have mixing ratios of about 100 ppm

    Effects of amyloid pathology and the APOE ε4 allele on the association between cerebrospinal fluid Aβ38 and Aβ40 and brain morphology in cognitively normal 70-years-olds

    Get PDF
    The association between cerebrospinal fluid (CSF) amyloid beta (Aβ) Aβ38 or Aβ40 and brain grey- and white matter integrity is poorly understood. We studied this in 213 cognitively normal 70-year-olds, and in subgroups defined by presence/absence of the APOE ε4 allele and Aβ pathology: Aβ−/APOE−, Aβ+/APOE−, Aβ−/APOE+ and Aβ+/APOE+. CSF Aβ was quantified using ELISA and genotyping for APOE was performed. Low CSF Aβ42 defined Aβ plaque pathology. Brain volumes were assessed using Freesurfer-5.3, and white matter integrity using tract-based statistics in FSL. Aβ38 and Aβ40 were positively correlated with cortical thickness, some subcortical volumes and white matter integrity in the total sample, and in 3 of the subgroups: Aβ−/APOE−, Aβ+/APOE− and Aβ−/APOE+. In Aβ+/APOE+ subjects, higher Aβ38 and Aβ40 were linked to reduced cortical thickness and subcortical volumes. We hypothesize that production of all Aβ species decrease in brain regions with atrophy. In Aβ+/APOE+, Aβ-dysregulation may be linked to cortical atrophy in which high Aβ levels is causing pathological changes in the gray matter of the brain

    Sex differences in CSF biomarkers for neurodegeneration and blood-brain barrier integrity.

    Get PDF
    INTRODUCTION: As cerebrospinal fluid (CSF) neurofilament light protein (NfL) and the CSF/serum albumin ratio (QAlb) are used in the clinical routine, the impact of demographic factors on these biomarkers is important to understand. METHODS: Participants were derived from two Swedish samples: the population‐based H70 Study (n = 308, age 70) and a clinical routine cohort (CSF NfL, n = 8995, QAlb, n = 39252, age 0 to 95). In the population‐based study, QAlb and NfL were examined in relation to sex, cardiovascular risk factors, and cerebral white matter lesions (WMLs). In the clinical cohort, QAlb and NfL sex differences were tested in relation to age. RESULTS: Men had higher QAlb and NfL concentrations and had higher QAlb and NfL concentrations from adolescence throughout life. NfL was not related to WML, but QAlb correlated positively with WMLs. DISCUSSION: The CSF NfL sex difference could not be explained by vascular pathology. Future studies should consider using different reference limits for men and women

    Deep learning from MRI-derived labels enables automatic brain tissue classification on human brain CT

    Get PDF
    Automatic methods for feature extraction, volumetry, and morphometric analysis in clinical neuroscience typically operate on images obtained with magnetic resonance (MR) imaging equipment. Although CT scans are less expensive to acquire and more widely available than MR scans, their application is currently limited to the visual assessment of brain integrity and the exclusion of co-pathologies. CT has rarely been used for tissue classification because the contrast between grey matter and white matter was considered insufficient. In this study, we propose an automatic method for segmenting grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and intracranial volume (ICV) from head CT images. A U-Net deep learning model was trained and validated on CT images with MRI-derived segmentation labels. We used data from 744 participants of the Gothenburg H70 Birth Cohort Studies for whom CT and T1-weighted MR images had been acquired on the same day. Our proposed model predicted brain tissue classes accurately from unseen CT images (Dice coefficients of 0.79, 0.82, 0.75, 0.93 and 0.98 for GM, WM, CSF, brain volume and ICV, respectively). To contextualize these results, we generated benchmarks based on established MR-based methods and intentional image degradation. Our findings demonstrate that CT-derived segmentations can be used to delineate and quantify brain tissues, opening new possibilities for the use of CT in clinical practice and research

    Spatial distribution of low-energy plasma around 2 comet 67P/CG from Rosetta measurements

    Get PDF
    International audienceWe use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet

    Cassini multi-instrument assessment of Saturn's polar cap boundary

    Get PDF
    We present the first systematic investigation of the polar cap boundary in Saturn's high-latitude magnetosphere through a multi-instrument assessment of various Cassini in situ data sets gathered between 2006 and 2009. We identify 48 polar cap crossings where the polar cap boundary can be clearly observed in the step in upper cutoff of auroral hiss emissions from the plasma wave data, a sudden increase in electron density, an anisotropy of energetic electrons along the magnetic field, and an increase in incidence of higher-energy electrons from the low-energy electron spectrometer measurements as we move equatorward from the pole. We determine the average level of coincidence of the polar cap boundary identified in the various in situ data sets to be 0.34° ± 0.05° colatitude. The average location of the boundary in the southern (northern) hemisphere is found to be at 15.6° (13.3°) colatitude. In both hemispheres we identify a consistent equatorward offset between the poleward edge of the auroral upward directed field-aligned current region of ~1.5–1.8° colatitude to the corresponding polar cap boundary. We identify atypical observations in the boundary region, including observations of approximately hourly periodicities in the auroral hiss emissions close to the pole. We suggest that the position of the southern polar cap boundary is somewhat ordered by the southern planetary period oscillation phase but that it cannot account for the boundary's full latitudinal variability. We find no clear evidence of any ordering of the northern polar cap boundary location with the northern planetary period magnetic field oscillation phase

    Magnetosphere-Ionosphere Coupling Through E-region Turbulence 1: Energy Budget

    Full text link
    During periods of intense geomagnetic activity, strong electric fields and currents penetrate from the magnetosphere into high-latitude ionosphere where they dissipate energy, form electrojets, and excite plasma instabilities in the E-region ionosphere. These instabilities give rise to plasma turbulence which induces non-linear currents and strong anomalous electron heating (AEH) as observed by radars. These two effects can increase the global ionospheric conductances. This paper analyzes the energy budget in the electrojet, while the companion paper applies this analysis to develop a model of anomalous conductivity and frictional heating useful in large-scale simulations and models of the geospace environment. Employing first principles, this paper proves for the general case an earlier conjecture that the source of energy for plasma turbulence and anomalous heating equals the work by external field on the non-linear current. Using a two-fluid model of an arbitrarily magnetized plasma and the quasilinear approximation, this paper describes the energy conversion process, calculates the partial sources of anomalous heating, and reconciles the apparent contradiction between the inherently 2-D non-linear current and the 3-D nature of AEH.Comment: 13 pages, 1 figure; 1st of two companion paper

    Genetic association of CDC2 with cerebrospinal fluid tau in Alzheimer's disease

    Get PDF
    We have recently reported that a polymorphism in the cell division cycle (CDC2) gene, designated Ex6 + 7I/D, is associated with Alzheimer's disease (AD). The CDC2 gene is located on chromosome 10q21.1 close to the marker D10S1225 linked to AD. Active cdc2 accumulates in neurons containing neurofibrillary tangles (NFT), a process that can precede the formation of NFT. Therefore, CDC2 is a promising candidate susceptibility gene for AD. We investigated the possible effects of the CDC2 polymorphism on cerebrospinal fluid (CSF) biomarkers in AD patients. CDC2 genotypes were evaluated in relation to CSF protein levels of total tau, phospho-tau and beta-amyloid (1-42) in AD patients and control individuals, and in relation to the amount of senile plaques and NFT in the frontal cortex and in the hippocampus in patients with autopsy-proven AD and controls. The CDC2 Ex6 + 7I allele was associated with a gene dose-dependent increase of CSF total tau levels (F-2,F- 626 = 7.0, p = 0.001) and the homozygous CDC2Ex6 +7II genotype was significantly more frequent among AD patients compared to controls (p = 0.006, OR = 1.57, 95% CI 1.13-2.17). Our results provide further evidence for an involvement of cdc2 in the pathogenesis of AD. Copyright (C) 2005 S. Karger AG, Basel
    corecore