41 research outputs found

    Evolution of the cosmic ray anisotropy above 10^{14} eV

    Get PDF
    The amplitude and phase of the cosmic ray anisotropy are well established experimentally between 10^{11} eV and 10^{14} eV. The study of their evolution into the energy region 10^{14}-10^{16} eV can provide a significant tool for the understanding of the steepening ("knee") of the primary spectrum. In this letter we extend the EAS-TOP measurement performed at E_0 around 10^{14} eV, to higher energies by using the full data set (8 years of data taking). Results derived at about 10^{14} and 4x10^{14} eV are compared and discussed. Hints of increasing amplitude and change of phase above 10^{14} eV are reported. The significance of the observation for the understanding of cosmic ray propagation is discussed.Comment: 4 pages, 3 figures, accepted for publication on ApJ Letter

    Measurement of the cosmic ray hadron spectrum up to 30 TeV at mountain altitude: the primary proton spectrum

    Get PDF
    The flux of cosmic ray hadrons at the atmospheric depth of 820 g/cm^2 has been measured by means of the EAS-TOP hadron calorimeter (Campo Imperatore, National Gran Sasso Laboratories, 2005 m a.s.l.). The hadron spectrum is well described by a single power law : S(E_h) = (2.25 +- 0.21 +- 0.34(sys)) 10^(-7)(E_h/1000)^(-2.79 +- 0.05) m^(-2) s^(-1) sr^(-1) GeV^(-1) over the energy range 30 GeV-30 TeV. The procedure and the accuracy of the measurement are discussed. The primary proton spectrum is derived from the data by using the CORSIKA/QGSJET code to compute the local hadron flux as a function of the primary proton spectrum and to calculate and subtract the heavy nuclei contribution (basing on direct measurements). Over a wide energy range E_0 = 0.5-50 TeV its best fit is given by a single power law : S(E_0) = (9.8 +- 1.1 +- 1.6(sys)) 10^(-5) (E_0/1000)^(-2.80 +- 0.06) m^(-2) s^(-1) sr^(-1) GeV^(-1). The validity of the CORSIKA/QGSJET code for such application has been checked using the EAS-TOP and KASCADE experimental data by reproducing the ratio of the measured hadron fluxes at the two experimental depths (820 and 1030 g/cm^2 respectively) at better than 10% in the considered energy range.Comment: 16 pages, 9 figures, accepted for publication in Astroparticle Physic

    Radio emission of highly inclined cosmic ray air showers measured with LOPES

    Get PDF
    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50∘^{\circ}, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80∘^{\circ}. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.Comment: A&A accepte

    The KASCADE-Grande Experiment and the LOPES Project

    Full text link
    KASCADE-Grande is the extension of the multi-detector setup KASCADE to cover a primary cosmic ray energy range from 100 TeV to 1 EeV. The enlarged EAS experiment provides comprehensive observations of cosmic rays in the energy region around the knee. Grande is an array of 700 x 700 sqm equipped with 37 plastic scintillator stations sensitive to measure energy deposits and arrival times of air shower particles. LOPES is a small radio antenna array to operate in conjunction with KASCADE-Grande in order to calibrate the radio emission from cosmic ray air showers. Status and capabilities of the KASCADE-Grande experiment and the LOPES project are presented.Comment: To appear in Nuclear Physics B, Proceedings Supplements, as part of the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and Surrounding

    The cosmic ray primary composition in the "knee" region through the EAS electromagnetic and muon measurements at EAS-TOP

    Get PDF
    Abstract The evolution of the cosmic ray primary composition in the energy range 10 6 –10 7 GeV (i.e. the "knee" region) is studied by means of the e.m. and muon data of the Extensive Air Shower EAS-TOP array (Campo Imperatore, National Gran Sasso Laboratories). The measurement is performed through: (a) the correlated muon number ( N μ ) and shower size ( N e ) spectra, and (b) the evolution of the average muon numbers and their distributions as a function of the shower size. From analysis (a) the dominance of helium primaries at the knee, and therefore the possibility that the knee itself is due to a break in their energy spectrum (at E k He =(3.5±0.3)×10 6 GeV) are deduced. Concerning analysis (b), the measurement accuracies allow the classification in terms of three mass groups: light (p,He), intermediate (CNO), and heavy (Fe). At primary energies E 0 ≈10 6 GeV the results are consistent with the extrapolations of the data from direct experiments. In the knee region the obtained evolution of the energy spectra leads to: (i) an average steep spectrum of the light mass group ( γ p,He >3.1), (ii) a spectrum of the intermediate mass group harder than the one of the light component ( γ CNO ≃2.75, possibly bending at E k CNO ≈(6–7)×10 6 GeV), (iii) a constant slope for the spectrum of the heavy primaries ( γ Fe ≃2.3–2.7) consistent with the direct measurements. In the investigated energy range, the average primary mass increases from 〈ln A 〉=1.6–1.9 at E 0 ≃1.5×10 6 GeV to 〈ln A 〉=2.8–3.1 at E 0 ≃1.5×10 7 GeV. The result supports the standard acceleration and propagation models of galactic cosmic rays that predict rigidity dependent cut-offs for the primary spectra of the different nuclei. The uncertainties connected to the hadronic interaction model (QGSJET in CORSIKA) used for the interpretation are discussed

    Temperature variations in the low stratosphere (50–200 hPa) monitored by means of the atmospheric muon flux

    Get PDF
    The dependence of the muon flux on the atmospheric parameters (pressure and temperature) is a well-known effect since long time ago. We have correlated the muon flux recorded by the electromagnetic detector of EAS-TOP with the atmospheric temperature (up to few hPa level) monitored by the radio-soundings of the ITAV—Aeronautica Militare at Pratica di Mare (Rome). A significant effect has been observed when the muon flux is correlated with the atmospheric temperature in the region 50–200 hPa, as expected, since this is the region where the mesons of first generation are produced. The technique has been applied to two short periods of strong temperature variations in the low stratosphere, showing that the temporal pattern of the temperature is fairly well reproduced by the variations of the muon flux. The main results of this analysis are presented

    The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data

    Full text link
    The cosmic ray primary composition in the energy range between 10**15 and 10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30 degrees. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual Nmu-Ne studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He). The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the "standard" galactic acceleration/propagation models that imply rigidity dependent breaks of the different components, and therefore breaks occurring at lower energies in the spectra of the light nuclei.Comment: Submitted to Astroparticle Physic

    Study of the cosmic ray primary spectrum at 10(15)< E-0 < 10(16) eV with the EAS-TOP array

    No full text
    The break observed in the electron shower size power law spectrum of Extensive Air Showers (EAS) at corresponding primary energy E-0 similar to (3 - 5)10(15) eV ("knee") is studied in different EAS components (electromagnetic and muonic) and at different atmospheric depths. A consistent description is obtained. The interpretation of data in terms of primary composition, and following the most accepted high energy interaction models, leads to an increasing average primary mass in this energy range. The study of such behaviour is expected to provide a crucial information for the understanding of the physical parameters that characterize the break for the different primaries
    corecore