78 research outputs found

    Экспериментальное исследование теплогидравлических характеристик оребренных плоских труб аппарата воздушного охлаждения масла

    Get PDF
    Air cooling devices are heat exchange units that are widely used in practice. However, they have a number of disadvantages due to the low value of the heat transfer coefficient from the air and the high resistance of finned tube bundles, which leads to large dimensions and the metal content of the device itself, to the need to develop a high power ventilator drive, but also to the need to demonstrate reduced energy efficiency. The objective of the present work is to determine optimal geometric sizes of finned flat heat exchange tubes manufactured by the techniques of extrusion and deforming cutting that reduce the weight and size characteristics of the heat exchange section of air cooling devices. The experimental studies of seven various samples of heat exchange sections, being different in fin pitch and height, tube section width, flat tube height and a number of inner channels, have determined the performance of each section with the use of the following criteria: thermal power, thermal efficiency, specific thermal heat transfer resistance, M. V. Kirpichev and V. M. Antuf’ev’s criteria. The obtained experimental data and the analysis of the passive method of enhancement in the near-wall area of the heat transfer surface finned by deforming cutting has shown that sample No 5 has maximum value of the performance criteria when the maximum height of a fin is 0.008 m and the minimum pitch of a fin is 0.0025 m over the investigated sample range. Thus, when the sizes of an oil air cooling device are maintained by using the amended heat transfer section of sample No 5, the amount of removed heat can be increased or the mass and dimensions of the device can be decreased while maintaining thermal power and, as a result, the power consumption for pumping can be decreased and the thermal-hydraulic performance of the device as a whole can be increased.Аппараты воздушного охлаждения представляют собой класс теплообменных агрегатов, широко применяемых на практике. Однако они обладают рядом недостатков, обусловленных малым значением коэффициента теплоотдачи со стороны воздуха и большим сопротивлением оребренных трубных пучков. Это приводит к большим габаритам и металлоемкости самого устройства, к необходимости развивать высокую мощность привода вентилятора, что снижает энергетическую эффективность. Цель исследований – определение оптимальных геометрических размеров оребренных плоских теплообменных труб, получаемых методами экструзии и деформирующего резания, обеспечивающих снижение массогабаритных характеристик теплообменной секции аппаратов воздушного охлаждения. На основании проведенных экспериментов с семью различными образцами теплообменных секций, отличающихся шагом и высотой ребер, шириной секции трубы, высотой плоской трубы и количеством внутренних каналов, установлена эффективность каждой секции по таким показателям, как: тепловая мощность, тепловая эффективность, удельное термическое сопротивление теплопередаче, критерии М. В. Кирпичева и В. М. Антуфьева. Полученные экспериментальные данные и анализ пассивного метода воздействия на пристенную область теплопередающей поверхности за счет оребрения методом деформирующего резания показывают, что максимальное значение критериев эффективности наблюдается у образца № 5 с наибольшей высотой (0,008 м) и минимальным шагом ребер (0,0025 м) в исследованном диапазоне. Таким образом, при сохранении геометрических размеров аппарата воздушного охлаждения масла за счет использования улучшенной секции теплообменного аппарата (образец № 5) возможно увеличение количества отводимой теплоты или уменьшение массогабаритных характеристик при сохранении тепловой мощности и, как следствие, снижение затрат мощности на прокачку и повышение теплогидравлической эффективности аппарата в целом

    An ancient bison from the mouth of the Rauchua River (Chukotka, Russia)

    Full text link
    An incomplete carcass of an extinct bison, Bison ex gr. priscus, was discovered in 2012 in the mouth of the Rauchua River (69°30'N, 166°49'E), Chukotka. The carcass included the rump with two hind limbs, ribs, and large flap of hide from the abdomen and sides, several vertebrae, bones of the forelimbs and anterior autopodia, stomach with its contents, and wool. The limb bones are relatively gracile, which is unusual in bison, and a SEM study of the hair microstructure suggests higher insulating capacity than in extant members of the genus. Additionally, mitochondrial DNA analyses indicate that the Rauchua bison belonged to a distinct and previously unidentified lineage of steppe bison. Two radiocarbon dates suggest a Holocene age for the bison: a traditional 14C date provided an estimate of 8030±70 14C yr BP (SPb-743) and an AMS radiocarbon date provided an age of 9497±92 14C yr BP (AA101271). These dates make this the youngest known bison from Chukotka. Analysis of stomach contents revealed a diet of herbaceous plants (meadow grasses and sedges) and shrubs, suggesting that the early Holocene vegetation near the mouth of the Rauchua River was similar to that of the present day: tundra-associated vegetation with undersized plants

    Global monitoring of soil animal communities using a common methodology.

    Get PDF
    Here we introduce the Soil BON Foodweb Team, a cross-continental collaborative network that aims to monitor soil animal communities and food webs using consistent methodology at a global scale. Soil animals support vital soil processes via soil structure modification, consumption of dead organic matter, and interactions with microbial and plant communities. Soil animal effects on ecosystem functions have been demonstrated by correlative analyses as well as in laboratory and field experiments, but these studies typically focus on selected animal groups or species at one or few sites with limited variation in environmental conditions. The lack of comprehensive harmonised large-scale soil animal community data including microfauna, mesofauna, and macrofauna, in conjunction with related soil functions, microbial communities, and vegetation, limits our understanding of biological interactions in soil systems and how these interactions affect ecosystem functioning. To provide such data, the Soil BON Foodweb Team invites researchers worldwide to use a common methodology to address six long-term goals: (1) to collect globally representative harmonised data on soil micro-, meso-, and macrofauna communities, (2) to describe key environmental drivers of soil animal communities and food webs, (3) to assess the efficiency of conservation approaches for the protection of soil animal communities, (4) to describe soil food webs and their association with soil functioning globally, (5) to establish a global research network for soil biodiversity monitoring and collaborative projects in related topics, (6) to reinforce local collaboration networks and expertise and support capacity building for soil animal research around the world. In this paper, we describe the vision of the global research network and the common sampling protocol to assess soil animal communities and advocate for the use of standard methodologies across observational and experimental soil animal studies. We will use this protocol to conduct soil animal assessments and reconstruct soil food webs at sites associated with the global soil biodiversity monitoring network, Soil BON, allowing us to assess linkages among soil biodiversity, vegetation, soil physico-chemical properties, climate, and ecosystem functions. In the present paper, we call for researchers especially from countries and ecoregions that remain underrepresented in the majority of soil biodiversity assessments to join us. Together we will be able to provide science-based evidence to support soil biodiversity conservation and functioning of terrestrial ecosystems

    Priorities for research in soil ecology

    Get PDF
    The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia – Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia. The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise

    Regional variability in peatland burning at mid-to high-latitudes during the Holocene

    Get PDF
    Northern peatlands store globally-important amounts of carbon in the form of partly decomposed plant detritus. Drying associated with climate and land-use change may lead to increased fire frequency and severity in peatlands and the rapid loss of carbon to the atmosphere. However, our understanding of the patterns and drivers of peatland burning on an appropriate decadal to millennial timescale relies heavily on individual site-based reconstructions. For the first time, we synthesise peatland macrocharcoal records from across North America, Europe, and Patagonia to reveal regional variation in peatland burning during the Holocene. We used an existing database of proximal sedimentary charcoal to represent regional burning trends in the wider landscape for each region. Long-term trends in peatland burning appear to be largely climate driven, with human activities likely having an increasing influence in the late Holocene. Warmer conditions during the Holocene Thermal Maximum (∼9–6 cal. ka BP) were associated with greater peatland burning in North America's Atlantic coast, southern Scandinavia and the Baltics, and Patagonia. Since the Little Ice Age, peatland burning has declined across North America and in some areas of Europe. This decline is mirrored by a decrease in wider landscape burning in some, but not all sub-regions, linked to fire-suppression policies, and landscape fragmentation caused by agricultural expansion. Peatlands demonstrate lower susceptibility to burning than the wider landscape in several instances, probably because of autogenic processes that maintain high levels of near-surface wetness even during drought. Nonetheless, widespread drying and degradation of peatlands, particularly in Europe, has likely increased their vulnerability to burning in recent centuries. Consequently, peatland restoration efforts are important to mitigate the risk of peatland fire under a changing climate. Finally, we make recommendations for future research to improve our understanding of the controls on peatland fires
    corecore