93 research outputs found

    Galaxy And Mass Assembly: galaxy morphology in the green valley, prominent rings, and looser spiral arms

    Get PDF
    Galaxies broadly fall into two categories: star-forming (blue) galaxies and quiescent (red) galaxies. In between, one finds the less populated “green valley . Some of these galaxies are suspected to be in the process of ceasing their star-formation through a gradual exhaustion of gas supply or already dead and are experiencing a rejuvenation of star-formation through fuel injection. We use the Galaxy And Mass Assembly database and the Galaxy Zoo citizen science morphological estimates to compare the morphology of galaxies in the green valley against those in the red sequence and blue cloud. Our goal is to examine the structural differences within galaxies that fall in the green valley, and what brings them there. Previous results found disc features such as rings and lenses are more prominently represented in the green valley population. We revisit this with a similar sized data set of galaxies with morphology labels provided by the Galaxy Zoo for the GAMA fields based on new KiDS images. Our aim is to compare qualitatively the results from expert classification to that of citizen science. We observe that ring structures are indeed found more commonly in green valley galaxies compared to their red and blue counterparts. We suggest that ring structures are a consequence of disc galaxies in the green valley actively exhibiting characteristics of fading discs and evolving disc morphology of galaxies. We note that the progression from blue to red correlates with loosening spiral arm structure

    RTZen: Highly Predictable, Real-Time Java Middleware for Distributed and Embedded Systems

    Full text link
    Distributed real-time and embedded (DRE) applications possess stringent quality of service (QoS) requirements, such as predictability, latency, and throughput constraints. Real-Time CORBA, an open middleware standard, allows DRE applications to allocate, schedule, and control resources to ensure predictable end-to-end QoS. The Real-Time Specification for Java (RTSJ) has been developed to provide extensions to Java so that it can be used for real-time systems, in order to bring Java's advantages, such as portability and ease of use, to real-time applications.In this paper, we describe RTZen, an implementation of a Real-Time CORBA Object Request Broker (ORB), designed to comply with the restrictions imposed by RTSJ. RTZen is designed to eliminate the unpredictability caused by garbage collection and improper support for thread scheduling through the use of appropriate data structures, threading models, and memory scopes. RTZen's architecture is also designed to hide the complexities of RTSJ related to distributed programming from the application developer. Empirical results show that RTZen is highly predictable and has acceptable performance. RTZen therefore demonstrates that Real-Time CORBA middleware implemented in real-time Java can meet stringent QoS requirements of DRE applications, while supporting safer, easier, cheaper, and faster development in real-time Java

    Acute norovirus gastroenteritis in children in a highly rotavirus-vaccinated population in Northeast Brazil.

    Get PDF
    Background: Gastroenteritis is one of the most important causes of morbidity and mortality in children and an important etiological agent is norovirus. Objective: We describe the occurrence and characteristics of norovirus diarrhoea in children from Sergipe, Northeast-Brazil, over two consecutive periods of three years following rotavirus vaccine introduction. Study design: A cross sectional hospital-based survey conducted from October-2006 to September-2009 and from July-2011 to January-2013. Acute diarrhoea cases had a stool sample collected and tested for norovirus by RT-PCR and positive samples were sequenced. Results: In total 280 (19.6%) of 1432 samples were norovirus positive, including 204 (18.3%) of 1,113 samples collected during the first period and 76 (23.9%) of 318 collected during the second period. The proportion of children with norovirus infection increased significantly through the second study period (χ2 for trend = 6.7; p = 0.009), was more frequent in rotavirus vaccinated and in younger children (p < 0.001). Of 280 norovirus-positive specimens, 188 (67.1%) were sequenced. Of these, 12 were genogroup I and 176 genogroup II. The main genotype was GII.4 (149/188, 79.3%), followed by GII.2 (6, 3.2%) and GII.6 (5, 2.6%). Conclusion: Norovirus annual detection rates increased over the study period. The detection of norovirus was higher among young children

    Incidence and risk factors for community-acquired acute gastroenteritis in north-west Germany in 2004

    Get PDF
    In developed countries, acute gastroenteritis (AGE) is a major source of morbidity. However, only a few studies have estimated its incidence and the associated medical burden. This population-based study determined the incidence of community-acquired AGE patients seeking medical care and the relative role of various pathogens. Stool samples from patients with AGE presenting to a general practitioner (GP), pediatrician, or specialist in internal medicine for that reason were screened for various bacterial and viral enteropathogens. A control group was established as well. Incidences were calculated by the number of positive patients divided by the general population. The study was performed in north-west Germany in 2004. The incidence of AGE patients requiring medical consultation was 4,020/100,000 inhabitants. Children (<5 years of age) were at the highest risk (13,810/100,000 inhabitants). Of the patients, 6.6% were tested positive for an enteropathogenic bacteria and 17.7% for a viral agent. The predominant pathogens were norovirus (626/100,000) and rotavirus (270/100,000). Salmonella was the most frequently detected bacteria (162/100,000). The results presented confirm AGE and, specifically, AGE of viral origin as a major public health burden in developed countries

    Galaxy And Mass Assembly:galaxy morphology in the green valley, prominent rings, and looser spiral arms

    Get PDF
    Galaxies fall broadly into two categories: star-forming (blue) galaxies and quiescent (red) galaxies. In between, one finds the less populated ‘green valley’. Some of these galaxies are suspected to be in the process of ceasing their star formation through a gradual exhaustion of gas supply, or already dead and experiencing a rejuvenation of star formation through fuel injection. We use the Galaxy And Mass Assembly (GAMA) database and the Galaxy Zoo citizen science morphological estimates to compare the morphology of galaxies in the green valley with those in the red sequence and blue cloud. Our goal is to examine the structural differences within galaxies that fall in the green valley, and what brings them there. Previous results found that disc features such as rings and lenses are more prominently represented in the green-valley population. We revisit this with a similar sized data set of galaxies with morphology labels provided by the Galaxy Zoo for the GAMA fields based on new Kilo-Degree Survey (KiDS) images. Our aim is to compare the results from expert classification qualitatively with those of citizen science. We observe that ring structures are indeed found more commonly in green-valley galaxies compared with their red and blue counterparts. We suggest that ring structures are a consequence of disc galaxies in the green valley actively exhibiting the characteristics of fading discs and evolving disc morphology of galaxies. We note that the progression from blue to red correlates with loosening spiral-arm structure

    Preparing for low surface brightness science with the Vera C. Rubin Observatory:Characterization of tidal features from mock images

    Get PDF
    Tidal features in the outskirts of galaxies yield unique information about their past interactions and are a key prediction of the hierarchical structure formation paradigm. The Vera C. Rubin Observatory is poised to deliver deep observations for potentially millions of objects with visible tidal features, but the inference of galaxy interaction histories from such features is not straightforward. Utilizing automated techniques and human visual classification in conjunction with realistic mock images produced using the NewHorizon cosmological simulation, we investigate the nature, frequency, and visibility of tidal features and debris across a range of environments and stellar masses. In our simulated sample, around 80 per cent of the flux in the tidal features around Milky Way or greater mass galaxies is detected at the 10-yr depth of the Legacy Survey of Space and Time (30-31 mag arcsec-2), falling to 60 per cent assuming a shallower final depth of 29.5 mag arcsec-2. The fraction of total flux found in tidal features increases towards higher masses, rising to 10 per cent for the most massive objects in our sample (M* ∼1011.5 M⊙). When observed at sufficient depth, such objects frequently exhibit many distinct tidal features with complex shapes. The interpretation and characterization of such features varies significantly with image depth and object orientation, introducing significant biases in their classification. Assuming the data reduction pipeline is properly optimized, we expect the Rubin Observatory to be capable of recovering much of the flux found in the outskirts of Milky Way mass galaxies, even at intermediate redshifts (z < 0.2)

    Pan-African Genetic Structure in the African Buffalo (Syncerus caffer): Investigating Intraspecific Divergence

    Get PDF
    The African buffalo (Syncerus caffer) exhibits extreme morphological variability, which has led to controversies about the validity and taxonomic status of the various recognized subspecies. The present study aims to clarify these by inferring the pan-African spatial distribution of genetic diversity, using a comprehensive set of mitochondrial D-loop sequences from across the entire range of the species. All analyses converged on the existence of two distinct lineages, corresponding to a group encompassing West and Central African populations and a group encompassing East and Southern African populations. The former is currently assigned to two to three subspecies (S. c. nanus, S. c. brachyceros, S. c. aequinoctialis) and the latter to a separate subspecies (S. c. caffer). Forty-two per cent of the total amount of genetic diversity is explained by the between-lineage component, with one to seventeen female migrants per generation inferred as consistent with the isolation-with-migration model. The two lineages diverged between 145 000 to 449 000 years ago, with strong indications for a population expansion in both lineages, as revealed by coalescent-based analyses, summary statistics and a star-like topology of the haplotype network for the S. c. caffer lineage. A Bayesian analysis identified the most probable historical migration routes, with the Cape buffalo undertaking successive colonization events from Eastern toward Southern Africa. Furthermore, our analyses indicate that, in the West-Central African lineage, the forest ecophenotype may be a derived form of the savanna ecophenotype and not vice versa, as has previously been proposed. The African buffalo most likely expanded and diverged in the late to middle Pleistocene from an ancestral population located around the current-day Central African Republic, adapting morphologically to colonize new habitats, hence developing the variety of ecophenotypes observed today
    corecore