1,428 research outputs found

    Entangled spinning particles in charged and rotating black holes

    Full text link
    Spin precession for an EPR pair of spin-1/2 particles in equatorial orbits around a Kerr-Newman black hole is studied. Hovering observers are introduced to ensure fixed reference frames in order to perform the Wigner rotation. These observers also guarantee a reliable direction to compare spin states in rotating black holes. The velocity of the particle due frame-dragging is explicitly incorporated by addition of velocities with respect the hovering observers and the corresponding spin precession angle is computed. The spin-singlet state is observed to be mixed with the spin-triplet by dynamical and gravity effects, thus it is found that a perfect anti-correlation of entangled states for these observers is deteriorated. Finally, an analysis concerning the different limit cases of parameters of spin precession including the frame-dragging effects is carried out.Comment: 25+1 pages, 7 eps figures. Major changes were made through all the manuscript. Clarifications regarding modifications were introduced through the draft. Figures were changed and reduced in number. arXiv admin note: text overlap with arXiv:quant-ph/030711

    Fission barriers of r-process nuclei using the BCPM energy density functional

    Get PDF

    Opening up the Quantum Three-Box Problem with Undetectable Measurements

    Get PDF
    One of the most striking features of quantum mechanics is the profound effect exerted by measurements alone. Sophisticated quantum control is now available in several experimental systems, exposing discrepancies between quantum and classical mechanics whenever measurement induces disturbance of the interrogated system. In practice, such discrepancies may frequently be explained as the back-action required by quantum mechanics adding quantum noise to a classical signal. Here we implement the 'three-box' quantum game of Aharonov and Vaidman in which quantum measurements add no detectable noise to a classical signal, by utilising state-of-the-art control and measurement of the nitrogen vacancy centre in diamond. Quantum and classical mechanics then make contradictory predictions for the same experimental procedure, however classical observers cannot invoke measurement-induced disturbance to explain this discrepancy. We quantify the residual disturbance of our measurements and obtain data that rule out any classical model by > 7.8 standard deviations, allowing us for the first time to exclude the property of macroscopic state-definiteness from our system. Our experiment is then equivalent to a Kochen-Spekker test of quantum non-contextuality that successfully addresses the measurement detectability loophole

    Understanding the evolution of native pinewoods in Scotland will benefit their future management and conservation

    Get PDF
    Scots pine (Pinus sylvestris L.) is a foundation species in Scottish highland forests and a national icon. Due to heavy exploitation, the current native pinewood coverage represents a small fraction of the postglacial maximum. To reverse this decline, various schemes have been initiated to promote planting of new and expansion of old pinewoods. This includes the designation of seed zones for control of the remaining genetic resources. The zoning was based mainly on biochemical similarity among pinewoods but, by definition, neutral molecular markers do not reflect local phenotypic adaptation. Environmental variation within Scotland is substantial and it is not yet clear to what extent this has shaped patterns of adaptive differentiation among Scottish populations. Systematic, rangewide common-environment trials can provide insights into the evolution of the native pinewoods, indicating how environment has influenced phenotypic variation and how variation is maintained. Careful design of such experiments can also provide data on the history and connectivity among populations, by molecular marker analysis. Together, phenotypic and molecular datasets from such trials can provide a robust basis for refining seed transfer guidelines for Scots pine in Scotland and should form the scientific basis for conservation action on this nationally important habitat

    r-PROCESS CALCULATIONS WITH A MICROSCOPIC DESCRIPTION OF THE FISSION PROCESS

    Get PDF
    We computed the fission properties of nuclei in the range of 84 ≤ Z ≤ 120 and 118 ≤ N ≤ 250 using the Barcelona–Catania–Paris–Madrid (BCPM) Energy Density Functional (EDF). For the first time, a set of spontaneous and neutron-induced fission rates were obtained from a microscopic calculation of nuclear collective inertias. These fission rates were used as a nuclear input in the estimation of nucleosynthesis yields on neutron star mergers. We founded that the increased stability against the fission process predicted by the BCPM allows the formation of nuclei up to A = 286. This constitutes a first step in a systematic exploration of different sets of fission rates on r-process abundance predictionsS.A.G., G.M.P. and M.-R.W. acknowledge support from the Helmholtz Association through the Nuclear Astrophysics Virtual Institute (VH-VI417), and the BMBF-Verbundforschungsprojekt number 05P15RDFN1. M.-R.W. acknowledges support from the Villum Foundation (Project No. 13164) and the Danish National Research Foundation (DNRF91). The work of L.M.R. was supported in part by the Spanish Ministerio de Economía y Competitividad (MINECO), under contracts Nos. FIS2012-34479, FPA2015- 65929, FIS2015-63770 and by the Consolider-Ingenio 2010 Program MULTIDAR

    Exactly solvable pairing Hamiltonian for heavy nuclei

    Get PDF
    We present a new exactly solvable Hamiltonian with a separable pairing interaction and non-degenerate single-particle energies. It is derived from the hyperbolic family of Richardson-Gaudin models and possesses two free parameters, one related to an interaction cutoff and the other to the pairing strength. These two parameters can be adjusted to give an excellent reproduction of Gogny self-consistent mean-field calculations in the canonical basis.Comment: 4 pages, 3 figure
    • …
    corecore